
www.twosigma.com

Huohua 火花
Distributed Time Series Analysis
Framework For Spark

August 28, 2017

Wenbo Zhao

Spark Summit 2016

About Me

August 28, 2017

 Software Engineer @

 Focus on analytics related tools, libraries and Systems

$0.0

$500.0

$1,000.0

$1,500.0

$2,000.0

$2,500.0

1
/3

/1
9
5

0

1
/3

/1
9
5

3

1
/3

/1
9
5

6

1
/3

/1
9
5

9

1
/3

/1
9
6

2

1
/3

/1
9
6

5

1
/3

/1
9
6

8

1
/3

/1
9
7

1

1
/3

/1
9
7

4

1
/3

/1
9
7

7

1
/3

/1
9
8

0

1
/3

/1
9
8

3

1
/3

/1
9
8

6

1
/3

/1
9
8

9

1
/3

/1
9
9

2

1
/3

/1
9
9

5

1
/3

/1
9
9

8

1
/3

/2
0
0

1

1
/3

/2
0
0

4

1
/3

/2
0
0

7

1
/3

/2
0
1

0

1
/3

/2
0
1

3

1
/3

/2
0
1

6

S&P 500

We view everything as a time series

August 28, 2017

 Stock market prices

 Temperatures

 Sensor logs

 Presidential polls

 …

50°F

55°F

60°F

65°F

70°F

75°F

80°F

85°F

90°F

95°F

100°F

New York

San Francisco

What is a time series?

August 28, 2017

 A sequence of observations obtained in successive time order

 Our goal is to forecast future values given past observations

$8.90
$8.95

$8.90

$9.06
$9.10

8:00 11:00 14:00 17:00 20:00

corn price
?

Multivariate time series

August 28, 2017

 We can forecast better by joining multiple time series

 Temporal join is a fundamental operation for time series analysis

 Huohua enables fast distributed temporal join of large scale unaligned time series

$8.90
$8.95

$8.90

$9.06
$9.10

8:00 11:00 14:00 17:00 20:00

corn price

75°F

72°F
71°F

72°F

68°F
67°F

65°F

temperature

What is temporal join?

August 28, 2017

 A particular join function defined by a matching criteria over time

 Examples of criteria

 look-backward – find the most recent observation in the past

 look-forward – find the closest observation in the future

time series 1 time series 2

look-forward

time series 1 time series 2

look-backward
observation

Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM

10:00 AM

12:00 AM

Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM

10:00 AM

12:00 AM

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM

12:00 AM

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM

Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

…

…

Hundreds of thousands of data
sources with unaligned timestamps

Thousands of market data sets

We need fast and scalable distributed temporal join

Issues with existing solutions

August 28, 2017

 A single time series may not fit into a single machine

 Forecasting may involve hundreds of time series

 Existing packages don’t support temporal join or can’t handle large time series

 MatLab, R, SAS, Pandas

 Even Spark based solutions fall short

 PairRDDFunctions, DataFrame/Dataset, spark-ts

Huohua – a new time series library for Spark

August 28, 2017

 Goal

 provide a collection of functions to manipulate and analyze time series at scale

 group, temporal join, summarize, aggregate …

 How

 build a time series aware data structure

 extending RDD to TimeSeriesRDD

 optimize using temporal locality

 reduce shuffling

 reduce memory pressure by streaming

What is a TimeSeriesRDD in Huohua?

August 28, 2017

 TimeSeriesRDD extends RDD to represent time series data

 associates a time range to each partition

 tracks partitions’ time-ranges through operations

 preserves the temporal order

TimeSeriesRDD

operations

time series

functions

TimeSeriesRDD– an RDD representing time series

August 28, 2017

time temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

RDD

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…

TimeSeriesRDD– an RDD representing time series

August 28, 2017

range:
[06:00 AM, 07:00 AM)

range:
[07:00 AM, 8:00 AM)

range:
[8:00 AM, ∞)

TimeSeriesRDDtime temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…

Group function

August 28, 2017

 A group function groups rows with exactly the same timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

group 3

group 4

Group function

August 28, 2017

 A group function groups rows with nearby timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

Group in Spark

August 28, 2017

 Groups rows with exactly the same timestamps

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

 Data is shuffled and materialized

Group in Spark

August 28, 2017

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Spark

August 28, 2017

 Data is shuffled and materialized

RDD

groupBy

RDD

1:00PM 1:00PM

3:00PM 3:00PM

2:00PM

4:00PM

2:00PM

4:00PM

Group in Spark

August 28, 2017

 Data is shuffled and materialized

RDD

groupBy

RDD

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

August 28, 2017

 Temporal order is not preserved

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

August 28, 2017

 Another sort is required

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

August 28, 2017

 Another sort is required

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

2:00PM 2:00PM

4:00PM 4:00PM

1:00PM 1:00PM

3:00PM 3:00PM

Group in Spark

August 28, 2017

 Back to correct temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

August 28, 2017

 Back to temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Huohua

August 28, 2017

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Huohua

August 28, 2017

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Huohua

August 28, 2017

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM

4:00PM

2:00PM

Group in Huohua

August 28, 2017

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM 4:00PM

2:00PM

Benchmark for group

August 28, 2017

 Running time of count after group

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD

Temporal join

August 28, 2017

 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join

window

Temporal join

August 28, 2017

 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join

window

Temporal join

August 28, 2017

 Temporal join with criteria look-back and window of length 1

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

time series time series

Temporal join

August 28, 2017

 Temporal join with criteria look-back and window of length 1

 How do we do temporal join in TimeSeriesRDD?

TimeSeriesRDD TimeSeriesRDD

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window of length 1

 partition time space into disjoint intervals

TimeSeriesRDD TimeSeriesRDDjoined

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window of length 1

 Build dependency graph for the joined TimeSeriesRDD

TimeSeriesRDD TimeSeriesRDDjoined

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window 1

 Join data as streams per partition

1:00AM 1

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM

4:00AM

5:00AM

3:00AM

5:00AM

Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM

Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM

1:00AM

1:00AM

2:00AM

4:00AM

3:00AM

Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM

1:00AM

1:00AM

2:00AM

4:00AM 3:00AM

5:00AM 5:00AM

Benchmark for temporal join

August 28, 2017

 Running time of count after temporal join

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD

Functions over TimeSeriesRDD

August 28, 2017

 group functions such as window, intervalization etc.

 temporal joins such as look-forward, look-backward etc.

 summarizers such as average, variance, z-score etc. over

 windows

 Intervals

 cycles

Open Source

August 28, 2017

 Not quite yet …

 https://github.com/twosigma

Future work

August 28, 2017

 Dataframe / Dataset integration

 Speed up

 Richer APIs

 Python bindings

 More summarizers

Key contributors

August 28, 2017

 Christopher Aycock

 Jonathan Coveney

 Jin Li

 David Medina

 David Palaitis

 Ris Sawyer

 Leif Walsh

 Wenbo Zhao

Thank you

August 28, 2017

 QA

This document is being distributed for informational and educational purposes only and is not an offer to sell or the solicitation of an offer to buy

any securities or other instruments. The information contained herein is not intended to provide, and should not be relied upon for investment

advice. The views expressed herein are not necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, “Two Sigma”).

Such views reflect significant assumptions and subjective of the author(s) of the document and are subject to change without notice. The

document may employ data derived from third-party sources. No representation is made as to the accuracy of such information and the use of

such information in no way implies an endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may be owned by entities other than Two Sigma. If

so, such copyrights and/or trademarks are most likely owned by the entity that created the material and are used purely for identification and

comment as fair use under international copyright and/or trademark laws. Use of such image, copyright or trademark does not imply any

association with such organization (or endorsement of such organization) by Two Sigma, nor vice versa.

