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About Me

August 28, 2017

 Software Engineer @

 Focus on analytics related tools, libraries and Systems



$0.0

$500.0

$1,000.0

$1,500.0

$2,000.0

$2,500.0

1
/3

/1
9
5

0

1
/3

/1
9
5

3

1
/3

/1
9
5

6

1
/3

/1
9
5

9

1
/3

/1
9
6

2

1
/3

/1
9
6

5

1
/3

/1
9
6

8

1
/3

/1
9
7

1

1
/3

/1
9
7

4

1
/3

/1
9
7

7

1
/3

/1
9
8

0

1
/3

/1
9
8

3

1
/3

/1
9
8

6

1
/3

/1
9
8

9

1
/3

/1
9
9

2

1
/3

/1
9
9

5

1
/3

/1
9
9

8

1
/3

/2
0
0

1

1
/3

/2
0
0

4

1
/3

/2
0
0

7

1
/3

/2
0
1

0

1
/3

/2
0
1

3

1
/3

/2
0
1

6

S&P 500

We view everything as a time series

August 28, 2017

 Stock market prices

 Temperatures

 Sensor logs

 Presidential polls

 …
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What is a time series?
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 A sequence of observations obtained in successive time order

 Our goal is to forecast future values given past observations
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Multivariate time series
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 We can forecast better by joining multiple time series

 Temporal join is a fundamental operation for time series analysis

 Huohua enables fast distributed temporal join of large scale unaligned time series
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What is temporal join?
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 A particular join function defined by a matching criteria over time

 Examples of criteria

 look-backward – find the most recent observation in the past 

 look-forward – find the closest observation in the future

time series 1 time series 2

look-forward

time series 1 time series 2

look-backward
observation



Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM 60 °F   

10:00 AM 70 °F

12:00 AM 80 °F

time corn price
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Temporal join with look-backward criteria
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Temporal join with look-backward criteria
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Temporal join with look-backward criteria
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08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time weather

08:00 AM 60 °F   

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F   

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F   

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

August 28, 2017

time weather

08:00 AM 60 °F   

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F   

10:00 AM 70 °F

12:00 AM 80 °F

…

…

Hundreds of thousands of data 
sources with unaligned timestamps

Thousands of market data sets

We need fast and scalable distributed temporal join



Issues with existing solutions
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 A single time series may not fit into a single machine

 Forecasting may involve hundreds of time series

 Existing packages don’t support temporal join or can’t handle large time series

 MatLab, R,  SAS, Pandas

 Even Spark based solutions fall short

 PairRDDFunctions,  DataFrame/Dataset, spark-ts



Huohua – a new time series library for Spark
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 Goal

 provide a collection of functions to manipulate and analyze time series at scale

 group, temporal join, summarize, aggregate …

 How

 build a time series aware data structure

 extending RDD to TimeSeriesRDD

 optimize using temporal locality

 reduce shuffling

 reduce memory pressure by streaming 



What is a TimeSeriesRDD in Huohua?
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 TimeSeriesRDD extends RDD to represent time series data

 associates a time range to each partition

 tracks partitions’ time-ranges through operations

 preserves the temporal order

TimeSeriesRDD

operations

time series

functions



TimeSeriesRDD– an RDD representing time series
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time temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

RDD

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…



TimeSeriesRDD– an RDD representing time series
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range: 
[06:00 AM, 07:00 AM)

range:
[07:00 AM, 8:00 AM)

range: 
[8:00 AM, ∞)

TimeSeriesRDDtime temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…



Group function
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 A group function groups rows with exactly the same timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

group 3

group 4



Group function
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 A group function groups rows with nearby timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2



Group in Spark

August 28, 2017

 Groups rows with exactly the same timestamps

RDD
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 Data is shuffled and materialized

Group in Spark

August 28, 2017

RDD

groupBy

RDD
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Group in Spark
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 Data is shuffled and materialized

RDD

groupBy

RDD
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2:00PM

4:00PM



Group in Spark
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 Data is shuffled and materialized

RDD

groupBy

RDD
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2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM



Group in Spark
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 Temporal order is not preserved

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM
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3:00PM 3:00PM

4:00PM 4:00PM



Group in Spark
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 Another sort is required

RDD

groupBy sortBy

RDD RDD
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Group in Spark
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 Another sort is required

RDD
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Group in Spark
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 Back to correct temporal order

RDD

groupBy sortBy

RDD RDD
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3:00PM

3:00PM

4:00PM
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4:00PM 4:00PM



Group in Spark
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 Back to temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM
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1:00PM
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Group in Huohua
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 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM



Group in Huohua
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 Data is grouped locally as streams
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Group in Huohua
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 Data is grouped locally as streams

TimeSeriesRDD
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Group in Huohua
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 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM 4:00PM
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Benchmark for group
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 Running time of count after group

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD



Temporal join
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 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join 

window



Temporal join
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Temporal join
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 Temporal join with criteria look-back and window of length 1

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

time series time series



Temporal join
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 Temporal join with criteria look-back and window of length 1

 How do we do temporal join in TimeSeriesRDD?

TimeSeriesRDD TimeSeriesRDD

2:00AM
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4:00AM

5:00AM

1:00AM

3:00AM

5:00AM



Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window of length 1

 partition time space into disjoint intervals

TimeSeriesRDD TimeSeriesRDDjoined
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Temporal join in Huohua
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 Temporal join with criteria look-back and window of length 1

 Build dependency graph for the joined TimeSeriesRDD

TimeSeriesRDD TimeSeriesRDDjoined
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Temporal join in Huohua

August 28, 2017

 Temporal join with criteria look-back and window 1

 Join data as streams per partition

1:00AM 1

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM
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Temporal join in Huohua
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 Temporal join with criteria look-back and window 1

 Join data as streams 
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Temporal join in Huohua
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 Temporal join with criteria look-back and window 1

 Join data as streams 
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Temporal join in Huohua
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 Temporal join with criteria look-back and window 1

 Join data as streams 
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Benchmark for temporal join
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 Running time of count after temporal join

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS
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Functions over TimeSeriesRDD
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 group functions such as window, intervalization etc.

 temporal joins such as look-forward, look-backward etc.

 summarizers such as average, variance, z-score etc. over

 windows

 Intervals

 cycles



Open Source
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 Not quite yet … 

 https://github.com/twosigma



Future work
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 Dataframe / Dataset integration 

 Speed up

 Richer APIs

 Python bindings

 More summarizers
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Thank you
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 QA
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