Learning and Memorization

In the machine learning research community, it is generally believed that there is a tension between memorization and generalization. This paper examines the extent to which this tension exists, by exploring whether it is possible to generalize by memorizing alone.

JSM 2017 Experiences

A group of Two Sigma statisticians highlight a selection of interesting talks and presentations from the 2017 Joint Statistical Meeting.

Rademacher Averages: Theory and Practice

An overview of Rademacher Averages, a fundamental concept from statistical learning theory that can be used to derive uniform sample-dependent bounds to the deviation of samples averages from their expectations.

Graph Summarization with Quality Guarantees

Given a large graph, the authors we aim at producing a concise lossy representation (a summary) that can be stored in main memory and used to approximately answer queries about the original graph much faster than by using the exact representation.

Life at Two Sigma

We’re rigorous about our work and developing our people.

Learn More