
A 24x Speedup for
Reinforcement
Learning with RLlib +
RayRaoul Khouri5

/2
0

2
1

2

@buoy_the_samoyed
Raoul Khouri

https://www.instagram.com/buoy_the_samoyed/?hl=en

3

Financial Sciences Company

○ Investment management
○ Other financial data driven endeavours

(Insurance, Real Estate, Private Equity, …)

Founded in 2001

○ CEOs John Overdeck and David Siegel

~2000 employees (~1000 engineers and ~250 researchers)

Offices in NYC, London, Houston, Tokyo, Shanghai

Two Sigma

4

D
is

cl
ai

m
er

This document is being distributed for informational and educational purposes only and is not an offer to sell or
the solicitation of an offer to buy any securities or other instruments. The information contained herein is not
intended to provide, and should not be relied upon for, investment advice. The views expressed herein are not
necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, “Two Sigma”). Such
views reflect the assumptions of the author(s) of the document and are subject to change without notice. The
document may employ data derived from third-party sources. No representation is made by Two Sigma as to
the accuracy of such information and the use of such information in no way implies an endorsement of the
source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may be owned by
entities other than Two Sigma. If so, such copyrights and/or trademarks are most likely owned by the entity that
created the material and are used purely for identification and comment as fair use under international
copyright and/or trademark laws. Use of such image, copyright or trademark does not imply any association
with such organization (or endorsement of such organization) by Two Sigma, nor vice versa

Important Legal Information

5

Applied research currently includes Reinforcement Learning

Migrated from Stable Baselines to RLlib + Ray

Lessons learned

Case study of an experiment

What we will talk about today

The RL Pipeline

7

Overview of the RL pipeline

Many interactions with the environment needed!

Trainer/Agent

learning

Environment/Simulator

O
bs

er
va

tio
ns

 &

R
ew

ar
ds

A
ct

io
ns

Trainer
○ In charge of learning a policy

Environment
○ State machine
○ Actions go in
○ Observations and rewards come out

8

Bottlenecks in the RL pipeline

Learning Sampling

RLlib Scaling Guide

https://docs.ray.io/en/master/rllib-training.html#scaling-guide

9

Financial data

○ Lots of data
○ Low signal to noise ratio

Experiment taking 7-10 hrs to complete

○ 24 CPUs using Stable Baselines

Learning taking <10% of total time

○ ~90% generating samples

Our Experiment

10

GPUs

○ Yielded little to no speed up
■ Simulators don’t use GPUs

○ GPUs are expensive
○ “I got a machine with a larger GPU but I see no speed up.”

More CPUs

○ Tried machines with >24 CPUs on Stable Baselines
○ Little to no speed up

Off-Policy

○ Lower solution quality vs on-policy
○ Still need many samples due to noisy data

What we tried

RLlib

12

Generic Gym API

○ Easy environment migration

RLlib has a superset of algorithms vs Stable Baselines

○ Small changes in hyper parameters
○ Same solution quality

Tune managed our experiments

~1 week to migrate a project

Great community support + RLlib examples in the GitHub Repository

Migrating to RLlib

https://github.com/ray-project/ray/tree/master/rllib/examples

13

RLlib vs Stable Baselines Experiment Time (20M samples)

CPUs

Tr
ai

n
 t

im
e

(m
in

)
Stable Baseline 7-10 Hrs

RLlib 1.5-2.5 Hrs

~4x speed up

lower is better!

14

Types of RL parallelization

Why does RLlib parallelize better?

○ Vectorized environments
■ Efficient inference
■ Everything must step together

● If large variance in step time this can be very inefficient!
● We call this the “lock-step” issue

■ Constrained to this by many RL libraries
○ Batched rollouts

■ Slower inference
■ Sync at end of rollouts

● requires much less waiting
● avoids the “lock-step” issue

The “lock-step” issue is what caused our Stable
Baselines experiments to not parallelize well.

100ms
3ms

3ms

3ms

100ms

3ms

~23ms / step

3ms

3ms 3ms

100ms

3ms

15

The RLlib Solution to Parallelization

Hybrid Solution

○ rollout workers -> batched rollouts

○ envs per worker -> vectors

Very customizable!

~52ms / step

3 ms

3ms

3ms

3ms

3 ms

3ms

3ms

3ms

100 ms

3ms

100ms

3ms

100 ms

3ms

100ms

3ms

~35ms / step

3 ms

3ms

3ms

100 ms

100ms

3ms
100 ms
100ms

3ms

3 ms

3ms

3ms

3 ms

3ms

3ms

3 ms

3ms

3ms

16

Diagnostic of our Experiment

Wasting 6
hours here!

Overall Performance Sampling Performance

Sampling Optimizing Reset Inference Step

Stable Baselines (Vectorized) 150s 13s 100ms 0.8ms 24ms

RLlib (Batched) 20s 13s 100ms 1ms 3ms

100ms
3ms

3ms

3ms

100ms

3ms

17

Non-uniform time spent in steps or resets:

○ 4-5x speed up

Large parallelization (if inference is marginal):

○ ~ 10-50%

Expected Speed up at 24 CPUs:

When the “Lock-Step” Issue Matters

assuming gaussian step/reset variance

RLlib + Ray Clusters

19

RLlib + Ray vs Stable Baselines Experiment Time (20M samples)

CPUs

Tr
ai

n
 t

im
e

(m
in

)

Stable Baseline 7-10Hrs

RLlib 1.5-2.5 Hrs

RLlib + Ray ~20 min

additional machines

~6x speedup with ~16x the CPUs

Other nice things
about RLlib + Ray

21

Tune

a. Hyper parameter optimization
b. Experiment management

Large number of supported algorithms in RLlib

Ray distributed compute

Bonus features

22

Stable Baselines -> RLlib

○ Mileage may vary depending on the experiment
■ 7-10 Hrs -> 1.5-2.5 Hrs ~4x

○ Be aware of the environment parallelization!

+ Ray Clusters

○ Mileage may vary depending on the experiment
■ 1.5-2.5 Hrs -> ~20 mins ~6x

○ Commodity CPU-only machines are cheap

Together ~24x

The Ray ecosystem is a nice bonus

Conclusion

Questions?

