Improving Python and Spark Performance and Interoperability with Apache Arrow

Julien Le Dem
Principal Architect
Dremio

Li Jin
Software Engineer
Two Sigma Investments
About Us

Li Jin
@icexelloss

- Software Engineer at Two Sigma Investments
- Building a python-based analytics platform with PySpark
- Other open source projects:
 - Flint: A Time Series Library on Spark
 - Cook: A Fair Share Scheduler on Mesos

Julien Le Dem
@J_

- Architect at @DremioHQ
- Formerly Tech Lead at Twitter on Data Platforms
- Creator of Parquet
- Apache member
- Apache PMCs: Arrow, Kudu, Incubator, Pig, Parquet
Agenda

• Current state and limitations of PySpark UDFs
• Apache Arrow overview
• Improvements realized
• Future roadmap
Current state and limitations of PySpark UDFs
Why do we need User Defined Functions?

- Some computation is more easily expressed with Python than Spark built-in functions.
- Examples:
 - weighted mean
 - weighted correlation
 - exponential moving average
What is PySpark UDF

• PySpark UDF is a user defined function executed in Python runtime.

• Two types:
 – Row UDF:
 • lambda x: x + 1
 • lambda date1, date2: (date1 - date2).years
 – Group UDF (subject of this presentation):
 • lambda values: np.mean(np.array(values))
Row UDF

• Operates on a row by row basis
 – Similar to `map` operator

• Example …

```python
df.withColumn(‘v2’,
    udf(lambda x: x+1, DoubleType()))(df.v1)
```

• Performance:
 – 60x slower than build-in functions for simple case
Group UDF

- UDF that operates on more than one row
 - Similar to `groupBy` followed by `map` operator
- Example:
 - Compute weighted mean by month
Group UDF

- Not supported out of box:
 - Need boiler plate code to pack/unpack multiple rows into a nested row
- Poor performance
 - Groups are materialized and then converted to Python data structures
Example: Data Normalization

\[(\text{values} - \text{values}.\text{mean}()) / \text{values}.\text{std}()\]
Example: Data Normalization

group_columns = ['year', 'month']
non_group_columns = [col for col in df.columns if col not in group_columns]
s = StructType([f for f in df.schema.fields if f.name in non_group_columns])
cols = list([f.col(name) for name in non_group_columns])

df_norm = df.withColumn('values', F.struct(*cols))
df_norm = (df_norm.groupBy('year', 'month')
 .agg(F.collect_list(df_norm.values).alias('values')))

s2 = StructType(s.fields + [StructField('v3', DoubleType())])
@udf(ArrayType(s2))
def normalize(values):
 v1 = pd.Series([r.v1 for r in values])
 v1_norm = (v1 - v1.mean()) / v1.std()
 return [values[i] + (float(v1_norm[i]),) for i in range(0, len(values))]

df_norm = (df_norm.withColumn('new_values', normalize(df_norm.values)).drop('values')
 .withColumn('new_values', F.explode(F.col('new_values'))))

for col in [f.name for f in s2.fields]:
 df_norm = df_norm.withColumn(col, F.col('new_values.{0}'.format(col)))

df_norm = df_norm.drop('new_values')
Example: Monthly Data Normalization

```python
group_columns = ['year', 'month']
non_group_columns = [col for col in df.columns if col not in group_columns]
s = StructType([f for f in df.schema.fields if f.name in non_group_columns])
cols = list([F.col(name) for name in non_group_columns])

df_norm = df.withColumn('values', F.struct(*cols))
df_norm = (df_norm.groupBy('year', 'month')
    .agg(F.collect_list(df_norm.values).alias('Values'))) 
s2 = StructType(s.fields + [StructField('v3', DoubleType())])
@udf(ArrayType(s2))
def normalize(values):
    v1 = pd.Series([r.v1 for r in values])
    v1_norm = (v1 - v1.mean()) / v1.std()
    return [values[i] + (float(v1_norm[i]),) for i in range(0, len(values))]

df_norm = (df_norm.withColumn('new_values', normalize(df_norm.values))
    .drop('values')
    .withColumn('new_values', F.explode(F.col('new_values'))) )
for col in [f.name for f in s2.fields]:
    df_norm = df_norm.withColumn(col, F.col('new_values.{0}'.format(col)))
    df_norm = df_norm.drop('new_values')
```

Useful bits
Example: Monthly Data Normalization

```python
# Boilerplate

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, struct, struct_type, struct_field, array_type, array

# Boilerplate

def normalize(values):
    v1_norm = (v1 - v1.mean()) / v1.std()
    return [values[i] + (float(v1_norm[i]),) for i in range(0, len(values))]

df_norm = (df_norm.withColumn('new values', normalize(df_norm.values))
            .drop('values')
            .withColumn('new values', F.explode(F.col('new values')))

for col in ['year', 'month']:
    df_norm = df_norm.withColumnRenamed('new values.', f'new values_{col}').drop('new values_{col}')

# Boilerplate
```
Example: Monthly Data Normalization

• Poor performance - 16x slower than baseline

```java
groupBy().agg(collect_list())
```
Problems

- Packing / unpacking nested rows
- Inefficient data movement (Serialization / Deserialization)
- Scalar computation model: object boxing and interpreter overhead
Apache Arrow
Arrow: An open source standard

- Common need for in memory columnar
- Building on the success of Parquet.
- Top-level Apache project
- Standard from the start
 - Developers from 13+ major open source projects involved
- Benefits:
 - Share the effort
 - Create an ecosystem
Arrow goals

• Well-documented and cross language compatible
• Designed to take advantage of modern CPU
• Embeddable
 - In execution engines, storage layers, etc.
• Interoperable
High Performance Sharing & Interchange

Before

• Each system has its own internal memory format
• 70-80% CPU wasted on serialization and deserialization
• Functionality duplication and unnecessary conversions

With Arrow

• All systems utilize the same memory format
• No overhead for cross-system communication
• Projects can share functionality (eg: Parquet-to-Arrow reader)
Columnar data

persons = [{
 name: 'Joe',
 age: 18,
 phones: ['555-111-1111', '555-222-2222']
}, {
 name: 'Jack',
 age: 37,
 phones: ['555-333-3333']
}]}
Record Batch Construction

Each box (vector) is contiguous memory
The entire record batch is contiguous on wire

```json
{
  name: 'Joe',
  age: 18,
  phones: [
    '555-111-1111',
    '555-222-2222'
  ]
}```
In memory columnar format for speed

- Maximize CPU throughput
  - Pipelining
  - SIMD
  - cache locality
- Scatter/gather I/O
Results

- PySpark Integration:
  53x speedup (IBM spark work on SPARK-13534)
  http://s.apache.org/arrowresult1

- Streaming Arrow Performance
  7.75GB/s data movement
  http://s.apache.org/arrowresult2

- Arrow Parquet C++ Integration
  4GB/s reads
  http://s.apache.org/arrowresult3

- Pandas Integration
  9.71GB/s
  http://s.apache.org/arrowresult4
Arrow Releases

<table>
<thead>
<tr>
<th>Changes</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>237</td>
</tr>
<tr>
<td>195</td>
<td>131</td>
</tr>
<tr>
<td>311</td>
<td>76</td>
</tr>
<tr>
<td>85</td>
<td>17</td>
</tr>
</tbody>
</table>

© 2017 Dremio Corporation, Two Sigma Investments, LP
Improvements to PySpark with Arrow
How PySpark UDF works

Batched Rows

Execute

Python Worker

Batched Rows

UDF: scalar -> scalar
Current Issues with UDF

- Serialize / Deserialize in Python
- Scalar computation model (Python for loop)
Profile lambda x: x+1

Actual Runtime is **2s** without profiling.

8 Mb/s

91.8%
Vectorize Row UDF

Rows -> RB

Executor

RB -> Rows

Python Worker

Immutable Arrow Batch

Immutable Arrow Batch

UDF: pd.DataFrame -> pd.DataFrame
Why pandas.DataFrame

• Fast, feature-rich, widely used by Python users
• Already exists in PySpark (toPandas)
• Compatible with popular Python libraries:
  - NumPy, StatsModels, SciPy, scikit-learn…
• Zero copy to/from Arrow
Scalar vs Vectorized UDF

Actual Runtime is 2s without profiling

20x Speed Up

8787091 function calls in 4.084 seconds

1245 function calls (1226 primitive calls) in 0.092 seconds
Scalar vs Vectorized UDF

Overhead Removed
Scalar vs Vectorized UDF

- Less System Call
- Faster I/O
Scalar vs Vectorized UDF

4.5x Speed Up
Support Group UDF

- **Split-apply-combine:**
  - Break a problem into smaller pieces
  - Operate on each piece independently
  - Put all pieces back together

- Common pattern supported in SQL, Spark, Pandas, R …
Split-Apply-Combine (Current)

- Split: `groupBy`, `window`, …
- Apply: `mean`, `stddev`, `collect_list`, `rank` …
- Combine: Inherently done by Spark
Split-Apply-Combine (with Group UDF)

- Split: `groupBy`, `window`, …
- Apply: UDF
- Combine: Inherently done by Spark
Introduce `groupBy().apply()`

- **UDF**: `pd.DataFrame -> pd.DataFrame`
  - Treat each group as a pandas DataFrame
  - Apply UDF on each group
  - Assemble as PySpark DataFrame
Introduce `groupBy().apply()`
Previous Example: Data Normalization

$\frac{\text{values} - \text{values.mean}()}{\text{values.std}()}$
Previous Example: Data Normalization

Current:

```python
group_columns = ['year', 'month']
non_group_columns = [col for col in df.columns if col not in group_columns]
s = StructType([f for f in df.schema.fields if f.name in non_group_columns])
cols = list(F.col(name) for name in non_group_columns)

df_norm = df.withColumn('values', F.struct(cols))
df_norm = (df_norm.groupby('year', 'month').
 agg(F.collect_list(df_norm.values).alias('values')))

s2 = StructType(s.fields + [StructField('v3', DoubleType())])
@udf(ArrayType(s2))

def normalize(values):
 v1 = pd.Series([v1 for v1 in values])
 v1_norm = (v1 - v1.mean()) / v1.std()
 return [values[i] + (float(v1_norm[i]),) for i in range(0, len(values))]

df_norm = (df_norm.withColumn('new_values', normalize(df_norm.values))
 .drop('values')
 .withColumn('new_values', F.explode(F.col('new_values'))))

for col in [f.name for f in s2.fields]:
 df_norm = df_norm.withColumn(col, F.col('new_values.{0}'.format(col)))

df_norm = df_norm.drop('new_values')
```

Group UDF:

```python
schema = StructType(df.schema.fields + [StructField('v3', DoubleType())])

def normalize(df):
 v1 = df.v1
 df['v3'] = (v1 - v1.mean()) / v1.std()
 return df

df_norm = (df.groupby('year', 'month')
 .apply(F.UserDefinedFunction(normalize, schema)))
```

5x Speed Up
Limitations

• Requires Spark Row <-> Arrow RecordBatch conversion
  – Incompatible memory layout (row vs column)
• (groupBy) No local aggregation
  – Difficult due to how PySpark works. See https://issues.apache.org/jira/browse/SPARK-10915
Future Roadmap
What’s Next (Arrow)

- Arrow RPC/REST
- Arrow IPC
- Apache {Spark, Drill, Kudu} to Arrow Integration
  - Faster UDFs, Storage interfaces
What’s Next (PySpark UDF)

• Continue working on SPARK-20396
• Support Pandas UDF with more PySpark functions:
  – `groupBy().agg()`
  – `window`
import numpy as np

@pandas_udf(Scalar, DoubleType())
def weighted_mean_udf(v1, w):
    return np.average(v1, weights=w)

df.groupBy('id').agg(weighted_mean_udf(df.v1, df.w).as('v1_wm'))

w = Window.partitionBy('id')

@pandas_udf(Series, DoubleType())
def rank_udf(v):
    return v.rank(pct=True)

df.withColumn('rank', rank_udf(df.v).over(w))
Get Involved

• Watch SPARK-20396
• Join the Arrow community
  – dev@arrow.apache.org
  – Slack:
    • https://apachearrowslackin.herokuapp.com/
  – http://arrow.apache.org
  – Follow @ApacheArrow
Thank you

• Bryan Cutler (IBM), Wes McKinney (Two Sigma Investments) for helping build this feature
• Apache Arrow community
• Spark Summit organizers
• Two Sigma and Dremio for supporting this work