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“Ogni lassada xe persa.”
1 – Proverb from Trieste, Italy.

We present trièst, a suite of one-pass streaming algorithms to compute unbiased, low-variance, high-quality
approximations of the global and local (i.e., incident to each vertex) number of triangles in a fully-dynamic
graph represented as an adversarial stream of edge insertions and deletions.

Our algorithms use reservoir sampling and its variants to exploit the user-speci�ed memory space at all
times. �is is in contrast with previous approaches, which require hard-to-choose parameters (e.g., a �xed
sampling probability) and o�er no guarantees on the amount of memory they use. We analyze the variance of
the estimations and show novel concentration bounds for these quantities.

Our experimental results on very large graphs demonstrate that trièst outperforms state-of-the-art
approaches in accuracy and exhibits a small update time.

CCS Concepts: •Mathematics of computing→Graph enumeration; Probabilistic algorithms; •Information
systems →Data stream mining; •Human-centered computing →Social networks; •�eory of com-
putation →Dynamic graph algorithms; Sketching and sampling;

Additional Key Words and Phrases: cycle counting, reservoir sampling, subgraph counting

ACM Reference format:
Lorenzo De Stefani, Alessandro Epasto, Ma�eo Riondato, and Eli Upfal. 2017. TRIÈST: Counting Local and
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1 INTRODUCTION

Exact computation of characteristic quantities of Web-scale networks is o�en impractical or even
infeasible due to the humongous size of these graphs. It is natural in these cases to resort to

1Any missed chance is lost forever.
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e�cient-to-compute approximations of these quantities that, when of su�ciently high quality, can
be used as proxies for the exact values.

In addition to being huge, many interesting networks are fully-dynamic and can be represented
as a stream whose elements are edges/nodes insertions and deletions which occur in an arbitrary

(even adversarial) order. Characteristic quantities in these graphs are intrinsically volatile, hence
there is limited added value in maintaining them exactly. �e goal is rather to keep track, at all
times, of a high-quality approximation of these quantities. For e�ciency, the algorithms should
aim at exploiting the available memory space as much as possible and they should require only one

pass over the stream.
We introduce trièst, a suite of sampling-based, one-pass algorithms for adversarial fully-dynamic

streams to approximate the global number of triangles and the local number of triangles incident to

each vertex. Mining local and global triangles is a fundamental primitive with many applications
(e.g., community detection [4], topic mining [13], spam/anomaly detection [3, 28], ego-networks
mining [14] and protein interaction networks analysis [30].)

Many previous works on triangle estimation in streams also employ sampling (see Sect. 3), but
they usually require the user to specify in advance an edge sampling probability p that is �xed
for the entire stream. �is approach presents several signi�cant drawbacks. First, choosing a p
that allows to obtain the desired approximation quality requires to know or guess a number of
properties of the input (e.g., the size of the stream). Second, a �xed p implies that the sample size
grows with the size of the stream, which is problematic when the stream size is not known in
advance: if the user speci�es a large p, the algorithm may run out of memory, while for a smaller p
it will provide a suboptimal estimation. �ird, even assuming to be able to compute a p that ensures
(in expectation) full use of the available space, the memory would be fully utilized only at the end
of the stream, and the estimations computed throughout the execution would be suboptimal.

Contributions. We address all the above issues by taking a signi�cant departure from the �xed-
probability, independent edge sampling approach taken even by state-of-the-art methods [28].
Speci�cally:

• We introduce trièst (TRIangle Estimation from STreams), a suite of one-pass streaming

algorithms to approximate, at each time instant, the global and local number of triangles in
a fully-dynamic graph stream (i.e., a sequence of edges additions and deletions in arbitrary
order) using a �xed amount of memory. �is is the �rst contribution that enjoys all these
properties. trièst only requires the user to specify the amount of available memory, an
interpretable parameter that is de�nitively known to the user.
• Our algorithms maintain a sample of edges: they use the reservoir sampling [42] and random

pairing [16] sampling schemes to exploit the available memory as much as possible. To
the best of our knowledge, ours is the �rst application of these techniques to subgraph
counting in fully-dynamic, arbitrarily long, adversarially ordered streams. We present an
analysis of the unbiasedness and of the variance of our estimators, and establish strong
concentration results for them. �e use of reservoir sampling and random pairing requires
additional sophistication in the analysis, as the presence of an edge in the sample is not
independent from the concurrent presence of another edge. Hence, in our proofs we must
consider the complex dependencies in events involving sets of edges. �e gain is worth the
e�ort: we prove that the variance of our algorithms is smaller than that of state-of-the-art
methods [28], and this is con�rmed by our experiments.
• We conduct an extensive experimental evaluation of trièst on very large graphs, some

with billions of edges, comparing the performances of our algorithms to those of existing
state-of-the-art contributions [20, 28, 36]. Our algorithms signi�cantly and consistently
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TRIÈST: Counting Triangles in Fully-dynamic Streams with Fixed Memory Size 1:3

reduce the average estimation error by up to 90% w.r.t. the state of the art, both in the global
and local estimation problems, while using the same amount of memory. Our algorithms
are also extremely scalable, showing update times in the order of hundreds of microseconds
for graphs with billions of edges.

Paper organization. We formally introduce the se�ings and the problem in Sect. 2. In Sect. 3 we
discuss related works. We present and analyze trièst and discuss our design choices in Sect. 4.
�e results of our experimental evaluation are presented in Sect. 5. We draw our conclusions in
Sect. 6. Some of the proofs of our theoretical results are deferred to Appendix A.

2 PRELIMINARIES

We study the problem of counting global and local triangles in a fully-dynamic undirected graph as
an arbitrary (adversarial) stream of edge insertions and deletions.

Formally, for any (discrete) time instant t ≥ 0, let G(t ) = (V (t ),E(t )) be the graph observed up to
and including time t . At time t = 0 we have V (t ) = E(t ) = ∅. For any t > 0, at time t + 1 we receive
an element et+1 = (•, (u,v)) from a stream, where • ∈ {+,−} and u,v are two distinct vertices. �e
graph G(t+1) = (V (t+1),E(t+1)) is obtained by inserting a new edge or deleting an existing edge as
follows:

E(t+1) =

{
E(t ) ∪ {(u,v)} if • = “ + ”
E(t ) \ {(u,v)} if • = “ − ” .

If u or v do not belong to V (t ), they are added to V (t+1). Nodes are deleted from V (t ) when they
have degree zero.

Edges can be added and deleted in the graph in an arbitrary adversarial order, i.e., as to cause the
worst outcome for the algorithm, but we assume that the adversary has no access to the random bits

used by the algorithm. We assume that all operations have e�ect: if e ∈ E(t ) (resp. e < E(t )), (+, e)
(resp. (−, e)) can not be on the stream at time t + 1.

Given a graph G(t ) = (V (t ),E(t )), a triangle in G(t ) is a set of three edges {(u,v), (v,w), (w,u)} ⊆
E(t ), with u, v , and w being three distinct vertices. We refer to {u,v,w} ⊆ V (t ) as the corners of the
triangle. We denote with ∆(t ) the set of all triangles in G(t ), and, for any vertex u ∈ V (t ), with ∆(t )u
the subset of ∆(t ) containing all and only the triangles that have u as a corner.

Problem de�nition. We study the Global (resp. Local) Triangle Counting Problem in Fully-dynamic
Streams, which requires to compute, at each time t ≥ 0 an estimation of |∆(t ) | (resp. for each u ∈ V

an estimation of |∆(t )u |).

Multigraphs. Our approach can be further extended to count the number of global and local
triangles on a multigraph represented as a stream of edges. Using a formalization analogous to that
discussed for graphs, for any (discrete) time instant t ≥ 0, let G(t ) = (V (t ), E(t )) be the multigraph
observed up to and including time t , where E(t ) is now a bag of edges between vertices of V (t ).
�e multigraph evolves through a series of edge additions and deletions according to almost the
same process described for graphs, with the exception that now all operations must have e�ect
on the bag of edges E(t ). �us, for example, we may have (+, e) on the stream at time t and again
(+, e) at time t + 1. Some additional modi�cations to the model are needed to handle deletions
appropriately, and we outline them in Sect. 4.4.3. �e de�nition of triangle in a multigraph is the
same as in a graph. As before we denote with ∆(t ) the set of all triangles in G(t ), but now this set
may contain multiple triangles with the same set of vertices, although each of these triangles will
be a di�erent set of three edges among those vertices, i.e., a di�erent subset of the bag E(t ). For any
vertex u ∈ V (t ), we still denote with ∆(t )u the subset of ∆(t ) containing all and only the triangles that
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have u as a corner, with a similar caveat as ∆(t ). �e problems of global and local triangle counting
in multigraph edge streams are de�ned exactly in the same way as for graph edge streams.

3 RELATED WORK

�e literature on exact and approximate triangle counting is extremely rich, including exact
algorithms, graph sparsi�ers [40, 41], complex-valued sketches [22, 29], and MapReduce algo-
rithms [32–35, 38]. Here we restrict the discussion to the works most related to ours, i.e., to those
presenting algorithms for counting or approximating the number of triangles from data streams.
We refer to the survey by Latapy [26] for an in-depth discussion of other works. Table 1 presents
a summary of the comparison, in terms of desirable properties, between this work and relevant
previous contributions.

Table 1. Comparison with previous contributions

Work
Single
pass

Fixed
space

Local
counts

Global
counts

Fully-dynamic
streams

[3] 7 3/7a 3 7 7
[23] 7 7 7 3 7
[36] 3 3 7 3 7
[20] 3 3 7 3 7
[1] 3 7 7 3 7

[28] 3 7 3 7/3b 7
�is work 3 3 3 3 3

a�e required space is O ( |V (t ) |), which, although not dependent on the number of
triangles or on the number of edges, is not �xed, in the sense that it cannot be �xed a-priori.
bGlobal triangle counting is not mentioned in the article, but the extension is straightforward.

Many authors presented algorithms for more restricted (i.e., less generic) se�ings than ours, or
for which the constraints on the computation are more lax [2, 7, 21, 24]. For example, Becche�i et al.
[3] and Kolountzakis et al. [23] present algorithms for approximate triangle counting from static

graphs by performing multiple passes over the data. Pavan et al. [36] and Jha et al. [20] propose
algorithms for approximating only the global number of triangles from edge-insertion-only streams.
Bulteau et al. [6] present a one-pass algorithm for fully-dynamic graphs, but the triangle count
estimation is (expensively) computed only at the end of the stream and the algorithm requires, in
the worst case, more memory than what is needed to store the entire graph. Ahmed et al. [1] apply
the sampling-and-hold approach to insertion-only graph stream mining to obtain, only at the end
of the stream and using non-constant space, an estimation of many network measures including
triangles.

None of these works has all the features o�ered by trièst: performs a single pass over the data,
handles fully-dynamic streams, uses a �xed amount of memory space, requires a single interpretable
parameter, and returns an estimation at each time instant. Furthermore, our experimental results
show that we outperform the algorithms from [20, 36] on insertion-only streams.

Lim and Kang [28] present an algorithm for insertion-only streams that is based on independent
edge sampling with a �xed probability: for each edge on the stream, a coin with a user-speci�ed
�xed tails probability p is �ipped, and, if the outcome is tails, the edge is added to the stored sample
and the estimation of local triangles is updated. Since the memory is not fully utilized during most
of the stream, the variance of the estimate is large. Our approach handles fully-dynamic streams
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and makes be�er use of the available memory space at each time instant, resulting in a be�er
estimation, as shown by our analytical and experimental results.

Vi�er [42] presents a detailed analysis of the reservoir sampling scheme and discusses methods to
speed up the algorithm by reducing the number of calls to the random number generator. Random
Pairing [16] is an extension of reservoir sampling to handle fully-dynamic streams with insertions
and deletions. Cohen et al. [9] generalize and extend the Random Pairing approach to the case
where the elements on the stream are key-value pairs, where the value may be negative (and
less than −1). In our se�ings, where the value is not less than −1 (for an edge deletion), these
generalizations do not apply and the algorithm presented by Cohen et al. [9] reduces essentially to
Random Pairing.

4 ALGORITHMS

We present trièst, a suite of three novel algorithms for approximate global and local triangle
counting from edge streams. �e �rst two work on insertion-only streams, while the third can
handle fully-dynamic streams where edge deletions are allowed. We defer the discussion of the
multigraph case to Sect. 4.4.

Parameters. Our algorithms keep an edge sample S containing up to M edges from the stream,
where M is a positive integer parameter. For ease of presentation, we realistically assume M ≥ 6.
In Sect. 1 we motivated the design choice of only requiring M as a parameter and remarked on
its advantages over using a �xed sampling probability p. Our algorithms are designed to use the
available space as much as possible.

Counters. trièst algorithms keep counters to compute the estimations of the global and local
number of triangles. �ey always keep one global counter τ for the estimation of the global number
of triangles. Only the global counter is needed to estimate the total triangle count. To estimate
the local triangle counts, the algorithms keep a set of local counters τu for a subset of the nodes
u ∈ V (t ). �e local counters are created on the �y as needed, and always destroyed as soon as they
have a value of 0. Hence our algorithms use O(M) space (with one exception, see Sect. 4.2).

Notation. For any t ≥ 0, let GS = (V S,ES) be the subgraph of G(t ) containing all and only the
edges in the current sample S. We denote with NSu the neighborhood of u in GS : NSu = {v ∈
V (t ) : (u,v) ∈ S} and with NSu,v = NSu ∩ NSv the shared neighborhood of u and v in GS .

Presentation. We only present the analysis of our algorithms for the problem of global triangle
counting. For each presented result involving the estimation of the global triangle count (e.g.,
unbiasedness, bound on variance, concentration bound) and potentially using other global quantities
(e.g., the number of pairs of triangles in ∆(t ) sharing an edge), it is straightforward to derive the
correspondent variant for the estimation of the local triangle count, using similarly de�ned local
quantities (e.g., the number of pairs of triangles in ∆(t )u sharing an edge.)

4.1 A first algorithm – trièst-base

We �rst present trièst-base, which works on insertion-only streams and uses standard reservoir
sampling [42] to maintain the edge sample S:

• If t ≤ M , then the edge et = (u,v) on the stream at time t is deterministically inserted in S.
• If t > M , trièst-base �ips a biased coin with heads probability M/t . If the outcome is

heads, it chooses an edge (w, z) ∈ S uniformly at random, removes (w, z) from S, and
inserts (u,v) in S. Otherwise, S is not modi�ed.
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A�er each insertion (resp. removal) of an edge (u,v) from S, trièst-base calls the procedure
UpdateCounters that increments (resp. decrements) τ , τu and τv by |NSu,v |, and τc by one, for
each c ∈ NSu,v .

�e pseudocode for trièst-base is presented in Alg. 1.

ALGORITHM 1 trièst-base
Input: Insertion-only edge stream Σ, integer M ≥ 6

1: S ← ∅, t ← 0, τ ← 0
2: for each element (+, (u,v)) from Σ do
3: t ← t + 1
4: if SampleEdge((u,v), t) then
5: S ← S ∪ {(u,v)}
6: UpdateCounters(+, (u,v))

7: function SampleEdge((u,v), t )
8: if t ≤ M then
9: return True

10: else if FlipBiasedCoin(Mt ) = heads then
11: (u ′,v ′) ← random edge from S
12: S ← S \ {(u ′,v ′)}
13: UpdateCounters(−, (u ′,v ′))
14: return True
15: return False

16: function UpdateCounters((•, (u,v)))
17: NSu,v ← N

S
u ∩ N

S
v

18: for all c ∈ NSu,v do
19: τ ← τ • 1
20: τc ← τc • 1
21: τu ← τu • 1
22: τv ← τv • 1

4.1.1 Estimation. For any pair of positive integers a and b such that a ≤ min{M,b} let

ξa,b =


1 if b ≤ M(

b

M

)/ (
b − a

M − a

)
=

a−1∏
i=0

b − i

M − i
otherwise .

As shown in the following lemma, ξ−1
k,t is the probability that k edges of G(t ) are all in S at time t ,

i.e., the k-th order inclusion probability of the reservoir sampling scheme. �e proof can be found
in App. A.1.

Lemma 4.1. For any time step t and any positive integer k ≤ t , let B be any subset of E(t ) of size
|B | = k ≤ t . �en, at the end of time step t ,

Pr(B ⊆ S) =
{

0 if k > M
ξ−1
k,t otherwise

.

We make use of this lemma in the analysis of trièst-base.
Let, for any t ≥ 0, ξ (t ) = ξ3,t and let τ (t ) (resp. τ (t )u ) be the value of the counter τ at the end of

time step t (i.e., a�er the edge on the stream at time t has been processed by trièst-base) (resp. the
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value of the counter τu at the end of time step t if there is such a counter, 0 otherwise). When
queried at the end of time t , trièst-base returns ξ (t )τ (t ) (resp. ξ (t )τ (t )u ) as the estimation for the
global (resp. local for u ∈ V (t )) triangle count.

4.1.2 Analysis. We now present the analysis of the estimations computed by trièst-base.
Speci�cally, we prove their unbiasedness (and their exactness for t ≤ M) and then show an exact
derivation of their variance and a concentration result. We show the results for the global counts, but
results analogous to those in �ms. 4.2, 4.4, and 4.5 hold for the local triangle count for any u ∈ V (t ),
replacing the global quantities with the corresponding local ones. We also compare, theoretically,
the variance of trièst-base with that of a �xed-probability edge sampling approach [28], showing
that trièst-base has smaller variance for the vast majority of the stream.

4.1.3 Expectation. We have the following result about the estimations computed by trièst-base.

Theorem 4.2. We have

ξ (t )τ (t ) = τ (t ) = |∆(t ) | if t ≤ M

E
[
ξ (t )τ (t )

]
= |∆(t ) | if t > M .

�e trièst-base estimations are not only unbiased in all cases, but actually exact for t ≤ M , i.e.,
for t ≤ M , they are the true global/local number of triangles in G(t ).

To prove �m. 4.2, we need to introduce a technical lemma. Its proof can be found in Appendix A.1.
We denote with ∆S the set of triangles in GS .

Lemma 4.3. A�er each call to UpdateCounters, we have τ = |∆S | and τv = |∆
S
v | for any v ∈ VS

s.t. |∆Sv | ≥ 1.

From here, the proof of �m. 4.2 is a straightforward application of Lemma 4.3 for the case t ≤ M
and of that lemma, the de�nition of expectation, and Lemma 4.1 otherwise. �e complete proof can
be found in App. A.1.

4.1.4 Variance. We now analyze the variance of the estimation returned by trièst-base for
t > M (the variance is 0 for t ≤ M .)

Let r (t ) be the total number of unordered pairs of distinct triangles from ∆(t ) sharing an edge,2

and w (t ) =
(
|∆(t ) |

2
)
− r (t ) be the number of unordered pairs of distinct triangles that do not share

any edge.

Theorem 4.4. For any t > M , let f (t) = ξ (t ) − 1,

д(t) = ξ (t )
(M − 3)(M − 4)
(t − 3)(t − 4) − 1

and

h(t) = ξ (t )
(M − 3)(M − 4)(M − 5)
(t − 3)(t − 4)(t − 5) − 1 (≤ 0).

We have:

Var
[
ξ (t)τ (t )

]
= |∆(t ) | f (t) + r (t )д(t) +w (t )h(t). (1)

In our proofs, we carefully account for the fact that, as we use reservoir sampling [42], the
presence of an edge a in S is not independent from the concurrent presence of another edge b in
S. �is is not the case for samples built using �xed-probability independent edge sampling, such
2Two distinct triangles can share at most one edge.
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as mascot [28]. When computing the variance, we must consider not only pairs of triangles that
share an edge, as in the case for independent edge sampling approaches, but also pairs of triangles
sharing no edge, since their respective presences in the sample are not independent events. �e gain
is worth the additional sophistication needed in the analysis, as the contribution to the variance
by triangles no sharing edges is non-positive (h(t) ≤ 0), i.e., it reduces the variance. A comparison
of the variance of our estimator with that obtained with a �xed-probability independent edge
sampling approach, is discussed in Sect. 4.1.6.

Proof of Thm. 4.4. Assume |∆(t ) | > 0, otherwise the estimation is deterministically correct and
has variance 0 and the thesis holds. Let λ ∈ ∆(t ) and δ (t )λ be as in the proof of �m. 4.2. We have
Var[δ (t )λ ] = ξ

(t ) − 1 and from this and the de�nition of variance and covariance we obtain

Var
[
ξ (t )τ (t )

]
= Var

[ ∑
λ∈∆(t )

δ (t )λ

]
=

∑
λ∈∆(t )

∑
γ ∈∆(t )

Cov
[
δ (t )λ ,δ

(t )
γ

]
=

∑
λ∈∆(t )

Var
[
δ (t )λ

]
+

∑
λ,γ ∈∆(t )
λ,γ

Cov
[
δ (t )λ ,δ

(t )
γ

]
= |∆(t ) |(ξ (t ) − 1) +

∑
λ,γ ∈∆(t )
λ,γ

Cov
[
δ (t )λ ,δ

(t )
γ

]
= |∆(t ) |(ξ (t ) − 1) +

∑
λ,γ ∈∆(t )
λ,γ

(
E

[
δ (t )λ δ (t )γ

]
− E

[
δ (t )λ

]
E

[
δ (t )γ

] )
= |∆(t ) |(ξ (t ) − 1) +

∑
λ,γ ∈∆(t )
λ,γ

(
E

[
δ (t )λ δ (t )γ

]
− 1

)
. (2)

Assume now |∆(t ) | ≥ 2, otherwise we have r (t ) = w (t ) = 0 and the thesis holds as the second
term on the r.h.s. of (2) is 0. Let λ and γ be two distinct triangles in ∆(t ). If λ and γ do not share an
edge, we have δ (t )λ δ (t )γ = ξ

(t )ξ (t ) = ξ 2
3,t if all six edges composing λ and γ are in S at the end of time

step t , and δ (t )λ δ (t )γ = 0 otherwise. From Lemma 4.1 we then have that

E
[
δ (t )λ δ (t )γ

]
= ξ 2

3,t Pr
(
δ (t )λ δ (t )γ = ξ

2
3,t

)
= ξ 2

3,t
1
ξ6,t
= ξ3,t

5∏
j=3

M − j

t − j

= ξ (t )
(M − 3)(M − 4)(M − 5)
(t − 3)(t − 4)(t − 5) . (3)

If instead λ and γ share exactly an edge we have δ (t )λ δ (t )γ = ξ
2
3,t if all �ve edges composing λ and γ

are in S at the end of time step t , and δ (t )λ δ (t )γ = 0 otherwise. From Lemma 4.1 we then have that

E
[
δ (t )λ δ (t )γ

]
= ξ 2

3,t Pr
(
δ (t )λ δ (t )γ = ξ

2
3,t

)
= ξ 2

3,t
1
ξ5,t
= ξ3,t

4∏
j=3

M − j

t − j

= ξ (t )
(M − 3)(M − 4)
(t − 3)(t − 4) . (4)
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TRIÈST: Counting Triangles in Fully-dynamic Streams with Fixed Memory Size 1:9

�e thesis follows by combining (2), (3), (4), recalling the de�nitions of r (t ) and w (t ), and slightly
reorganizing the terms. �

4.1.5 Concentration. We have the following concentration result on the estimation returned by
trièst-base. Let h(t ) denote the maximum number of triangles sharing a single edge in G(t ).

Theorem 4.5. Let t ≥ 0 and assume |∆(t ) | > 0.3 For any ε,δ ∈ (0, 1), let

Φ = 3

√
8ε−2 3h(t ) + 1

|∆(t ) |
ln

(
(3h(t ) + 1)e

δ

)
.

If

M ≥ max
{
tΦ

(
1 + 1

2 ln2/3 (tΦ)

)
, 12ε−1 + e2, 25

}
,

then |ξ (t )τ (t ) − |∆(t ) | | < ε |∆(t ) | with probability > 1 − δ .

�e roadmap to proving �m. 4.5 is the following:
(1) we �rst de�ne two simpler algorithms, named indep and mix. �e algorithms use, respec-

tively, �xed-probability independent sampling of edges and reservoir sampling (but with a
di�erent estimator than the one used by trièst-base);

(2) we then prove concentration results on the estimators of indep and mix. Speci�cally,
the concentration result for indep uses a result by Hajnal and Szemerédi [17] on graph
coloring, while the one for mix will depend on the concentration result for indep and on a
Poisson-approximation-like technical result stating that probabilities of events when using
reservoir sampling are close to the probabilities of those events when using �xed-probability
independent sampling;

(3) we then show that the estimates returned by trièst-base are close to the estimates returned
by mix;

(4) �nally, we combine the above results and show that, ifM is large enough, then the estimation
provided by mix is likely to be close to |∆(t ) | and since the estimation computed by trièst-
base is close to that of mix, then it must also be close to |∆(t ) |.

Note: for ease of presentation, in the following we use ϕ(t ) to denote the estimation returned by
trièst-base, i.e., ϕ(t ) = ξ (t )τ (t ).

�e indep algorithm. �e indep algorithm works as follows: it creates a sample Sin by sampling
edges in E(t ) independently with a �xed probability p. It estimates the global number of triangles
in G(t ) as

ϕ(t )in =
τ (t )in
p3 ,

where τ (t )in is the number of triangles inSin. �is is for example the approach taken by mascot-c [28].

�e mix algorithm. �e mix algorithm works as follows: it uses reservoir sampling (like trièst-
base) to create a sample Smix of M edges from E(t ), but uses a di�erent estimator than the one used
by trièst-base. Speci�cally, mix uses

ϕ(t )mix =
( t
M

)3
τ (t )

3If |∆(t ) | = 0, our algorithms correctly estimate 0 triangles.
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as an estimator for |∆(t ) |, where τ (t ) is, as in trièst-base, the number of triangles inGS (trièst-base
uses ϕ(t ) = t (t−1)(t−2)

M (M−1)(M−2)τ
(t ) as an estimator.)

We call this algorithm mix because it uses reservoir sampling to create the sample, but computes
the estimate as if it used �xed-probability independent sampling, hence in some sense it “mixes”
the two approaches.

Concentration results for indep and mix. We now show a concentration result for indep. �en
we show a technical lemma (Lemma 4.7) relating the probabilities of events when using reservoir
sampling to the probabilities of those events when using �xed-probability independent sampling.
Finally, we use these results to show that the estimator used by mix is also concentrated (Lemma 4.9).

Lemma 4.6. Let t ≥ 0 and assume |∆(t ) | > 0.4 For any ε,δ ∈ (0, 1), if

p ≥ 3

√
2ε−2 ln

(
3h(t ) + 1

δ

)
3h(t ) + 1
|∆(t ) |

(5)

then

Pr
(
|ϕ(t )

in
− ∆(t ) | | < ε |∆(t ) |

)
> 1 − δ .

Proof. Let H be a graph built as follows: H has one node for each triangle in G(t ) and there
is an edge between two nodes in H if the corresponding triangles in G(t ) share an edge. By this
construction, the maximum degree in H is 3h(t ). Hence by the Hajanal-Szeméredi’s theorem [17]
there is a proper coloring of H with at most 3h(t ) + 1 colors such that for each color there are at
least L = |∆(t ) |

3h(t )+1 nodes with that color.
Assign an arbitrary numbering to the triangles of G(t ) (and, therefore, to the nodes of H ) and let

Xi be a Bernoulli random variable, indicating whether the triangle i in G(t ) is in the sample at time
t . From the properties of independent sampling of edges we have Pr(Xi = 1) = p3 for any triangle i .
For any color c of the coloring of H , let Xc be the set of r.v.’s Xi such that the node i in H has color c .
Since the coloring of H which we are considering is proper, the r.v.’s in Xc are independent, as they
correspond to triangles which do not share any edge and edges are sampled independent of each
other. Let Yc be the sum of the r.v.’s in Xc . �e r.v. Yc has a binomial distribution with parameters
|Xc | and p3

t . By the Cherno� bound for binomial r.v.’s, we have that

Pr
(
|p−3Yc − |Xc | | > ε |Xc |

)
< 2 exp

(
−ε2p3 |Xc |/2

)
< 2 exp

(
−ε2p3L/2

)
≤

δ

3h(t ) + 1
,

where the last step comes from the requirement in (5).�en by applying the union bound over all
the (at most) 3h(t ) + 1 colors we get

Pr(∃ color c s.t. |p−3Yc − |Xc | | > ε |Xc |) < δ .

4For |∆(t ) | = 0, indep correctly and deterministically returns 0 as the estimation.
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Since ϕin(t) = p
−3

∑
color c

Yc , from the above equation we have that, with probability at least 1 − δ ,

|ϕ(t )in − |∆
(t ) | | ≤

����� ∑
color c

p−3Yc −
∑

color c

|Xc |

�����
≤

∑
color c

|p−3Yc − |Xc | | ≤
∑

color c

ε |Xc | ≤ ε |∆
(t ) | .

�

�e above result is of independent interest and can be used, for example, to give concentration
bounds to the estimation computed by mascot-c [28].

We remark that we can not use the same approach from Lemma 4.6 to show a concentration
result for trièst-base because it uses reservoir sampling, hence the event of having a triangle a in
S and the event of having another triangle b in S are not independent.

We can however show the following general result, similar in spirit to the well-know Poisson
approximation of balls-and-bins processes [31]. Its proof can be found in App. A.1.

Fix the parameter M and a time t > M . Let Smix be a sample of M edges from E(t ) obtained
through reservoir sampling (as mix would do), and let Sin be a sample of the edges in E(t ) obtained
by sampling edges independently with probability M/t (as indep would do). We remark that the
size of Sin is in [0, t] but not necessarily M .

Lemma 4.7. Let f : 2E (t ) → {0, 1} be an arbitrary binary function from the powerset of E(t ) to
{0, 1} . We have

Pr (f (Smix) = 1) ≤ e
√
M Pr (f (Sin) = 1) .

We now use the above two lemmas to show that the estimator ϕ(t )mix computed by mix is concen-
trated. We will �rst need the following technical fact.

Fact 4.8. For any x ≥ 5, we have

ln
(
x(1 + ln2/3 x)

)
≤ ln2 x .

Lemma 4.9. Let t ≥ 0 and assume |∆(t ) | < 0. For any ε,δ ∈ (0, 1), let

Ψ = 2ε−2 3h(t ) + 1
|∆(t ) |

ln
(
e

3h(t ) + 1
δ

)
.

If

M ≥ max
{
t

3√
Ψ

(
1 + 1

2 ln2/3
(
t

3√
Ψ
))
, 25

}
then

Pr
(
|ϕ(t )

mix
− |∆(t ) | | < ε |∆(t ) |

)
≥ 1 − δ .

Proof. For any S ⊆ E(t ) let τ (S) be the number of triangles in S , i.e., the number of triplets of
edges in S that compose a triangle in G(t ). De�ne the function д : 2E (t ) → R as

д(S) =
( t
M

)3
τ (S) .

Assume that we run indep with p = M/t , and let Sin ⊆ E(t ) be the sample built by indep (through
independent sampling with �xed probability p). Assume also that we run mix with parameter M ,
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and let Smix be the sample built by mix (through reservoir sampling with a reservoir of size M). We
have that ϕ(t )in = д(Sin) and ϕ(t )mix = д(Smix). De�ne now the binary function f : 2E (t ) → {0, 1} as

f (S) =

{
1 if |д(S) − |∆(t ) | | > ε |∆(t ) |
0 otherwise .

We now show that, for M as in the hypothesis, we have

p ≥ 3

√
2ε−2 3h(t ) + 1

|∆(t ) |
ln

(
e
√
M

3h(t ) + 1
δ

)
. (6)

Assume for now that the above is true. From this, using Lemma 4.6 and the above fact about д we
get that

Pr
(
|ϕ(t )in − |∆

(t ) | | > ε |∆(t ) |
)
= Pr (f (Sin) = 1) < δ

e
√
M
.

From this and Lemma 4.7, we get that

Pr (f (Smix) = 1) ≤ δ

which, from the de�nition of f and the properties of д, is equivalent to

Pr
(
|ϕ(t )mix − |∆

(t ) | | > ε |∆(t ) |
)
≤ δ

and the proof is complete. All that is le� is to show that (6) holds for M as in the hypothesis.
Since p = M/t , we have that (6) holds for

M3 ≥ t32ε−2 3h(t ) + 1
|∆(t ) |

ln
(
√
Me

3h(t ) + 1
δ

)
= t32ε−2 3h(t ) + 1

|∆(t ) |

(
ln

(
e

3h(t ) + 1
δ

)
+

1
2 lnM

)
. (7)

We now show that (7) holds.
Let A = t 3√Ψ and let B = t 3√Ψ ln2/3

(
t 3√Ψ

)
. We now show that A3 + B3 is greater or equal to the

r.h.s. of (7), hence M3 = (A + B)3 > A3 + B3 must also be greater or equal to the r.h.s. of (7), i.e., (7)
holds. �is really reduces to show that

B3 ≥ t32ε−2 3h(t ) + 1
|∆(t ) |

1
2 lnM (8)

as the r.h.s.of (7) can be wri�en as

A3 + t32ε−2 3h(t ) + 1
|∆(t ) |

1
2 lnM .

We actually show that

B3 ≥ t3Ψ
1
2 lnM (9)

which implies (8) which, as discussed, in turn implies (7). Consider the ratio

B3

t3Ψ 1
2 lnM

=

1
2t

3Ψ ln2(t 3√Ψ)

t3Ψ 1
2 lnM

=
ln2(t 3√Ψ)

lnM
≥

ln2(t 3√Ψ)

ln
(
t 3√Ψ

(
1 + ln2/3

(
t 3√Ψ

))) . (10)
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We now show that t 3√Ψ ≥ 5. By the assumptions t > M ≥ 25 and by

t
3√
Ψ ≥

t
3
√
|∆(t ) |

≥
√
t

which holds because |∆(t ) | ≤ t3/2 (in a graph with t edges there can not be more than t3/2 triangles)
we have that t 3√Ψ ≥ 5. Hence Fact 4.8 holds and we can write, from (10):

ln2(t 3√Ψ)

ln
(
t 3√Ψ

(
1 + ln2/3

(
t 3√Ψ

))) ≥ ln2(t 3√Ψ)

ln2
(
t 3√Ψ

) ≥ 1,

which proves (9), and in cascade (8), (7), (6), and the thesis. �

Relationship between trièst-base and mix. When both trièst-base and mix use a sample of size
M , their respective estimators ϕ(t ) and ϕ(tmix are related as discussed in the following result, whose
straightforward proof is deferred to App. A.1.

Lemma 4.10. For any t > M we have���ϕ(t ) − ϕ(t )mix

��� ≤ ϕ(t )mix

4
M − 2 .

Tying everything together. Finally we can use the previous lemmas to prove our concentration
result for trièst-base.

Proof of Thm. 4.5. For M as in the hypothesis we have, from Lemma 4.9, that

Pr
(
ϕ(t )mix ≤ (1 + ε/2)|∆(t ) |

)
≥ 1 − δ .

Suppose the event ϕ(t )mix ≤ (1 + ε/2)|∆(t ) | (i.e., |ϕ(t )mix − |∆
(t ) | | ≤ ε |∆(t ) |/2) is indeed veri�ed. From

this and Lemma 4.10 we have

|ϕ(t ) − ϕ(t )mix | ≤
(
1 + ε2

)
|∆(t ) |

4
M − 2 ≤ |∆

(t ) |
6

M − 2 ,

where the last inequality follows from the fact that ε < 1. Hence, given that M ≥ 12ε−1 + e2 ≥
12ε−1 + 2, we have

|ϕ(t ) − ϕ(t )mix | ≤ |∆
(t ) |

ε

2 .

Using the above, we can then write:

|ϕ(t ) − |∆(t ) | | = |ϕ(t ) − ϕ(t )mix + ϕ
(t )
mix − |∆

(t ) | |

≤ |ϕ(t ) − ϕ(t )mix | + |ϕ
(t )
mix − |∆

(t ) | |

≤
ε

2 |∆
(t ) | +

ε

2 |∆
(t ) | = ε |∆(t ) |

which completes the proof. �

4.1.6 Comparison with fixed-probability approaches. We now compare the variance of trièst-
base to the variance of the �xed probability sampling approach mascot-c [28], which samples
edges independently with a �xed probability p and uses p−3 |∆S | as the estimate for the global
number of triangles at time t . As shown by Lim and Kang [28, Lemma 2], the variance of this
estimator is

Var[p−3 |∆S |] = |∆
(t ) | f̄ (p) + r (t )д̄(p),

where f̄ (p) = p−3 − 1 and д̄(p) = p−1 − 1.
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Assume that we give mascot-c the additional information that the stream has �nite length T ,
and assume we run mascot-c with p = M/T so that the expected sample size at the end of the
stream is M .5 Let V(t )�x be the resulting variance of the mascot-c estimator at time t , and let V(t ) be
the variance of our estimator at time t (see (1)). For t ≤ M , V(t ) = 0, hence V(t ) ≤ V(t )�x .

For M < t < T , we can show the following result. Its proof is more tedious than interesting so
we defer it to App. A.1.

Lemma 4.11. Let 0 < α < 1 be a constant. For any constantM > max( 8α
1−α , 42) and any t ≤ αT we

have V(t ) < V
(t )
�x .

For example, if we set α = 0.99 and run trièst-base with M ≥ 400 and mascot-c with p = M/T ,
we have that trièst-base has strictly smaller variance than mascot-c for 99% of the stream.

What about t = T ? �e di�erence between the de�nitions of V(t )�x and V(t ) is in the presence of
f̄ (M/T ) instead of f (t) (resp. д̄(M/T ) instead of д(t)) as well as the additional term w (t )h(M, t) ≤ 0
in our V(t ). Let M(T ) be an arbitrary slowly increasing function of T . For T → ∞ we can show
that limT→∞

f̄ (M (T )/T )
f (T ) = limT→∞

д̄(M (T )/T )
д(T ) = 1, hence, informally, V(T ) → V(T )�x , for T →∞.

A similar discussion also holds for the method we present in Sect. 4.2, and explains the results
of our experimental evaluations, which shows that our algorithms have strictly lower (empirical)
variance than �xed probability approaches for most of the stream.

4.1.7 Update time. �e time to process an element of the stream is dominated by the computation
of the shared neighborhoodNu,v in UpdateCounters. A Mergesort-based algorithm for the inter-
section requiresO (deg(u) + deg(v)) time, where the degrees are w.r.t. the graphGS . By storing the
neighborhood of each vertex in a Hash Table (resp. an AVL tree), the update time can be reduced to
O(min{deg(v), deg(u)}) (resp. amortized time O(min{deg(v), deg(u)} + log max{deg(v), deg(u)})).

4.2 Improved insertion algorithm – trièst-impr

trièst-impr is a variant of trièst-base with small modi�cations that result in higher-quality (i.e.,
lower variance) estimations. �e changes are:

(1) UpdateCounters is called unconditionally for each element on the stream, before the
algorithm decides whether or not to insert the edge into S. W.r.t. the pseudocode in Alg. 1,
this change corresponds to moving the call to UpdateCounters on line 6 to before the
if block. mascot [28] uses a similar idea, but trièst-impr is signi�cantly di�erent as
trièst-impr allows edges to be removed from the sample, since it uses reservoir sampling.

(2) trièst-impr never decrements the counters when an edge is removed from S. W.r.t. the
pseudocode in Alg. 1, we remove the call to UpdateCounters on line 13.

(3) UpdateCounters performs a weighted increase of the counters using η(t ) = max{1, (t −
1)(t − 2)/(M(M − 1))} as weight. W.r.t. the pseudocode in Alg. 1, we replace “1” with η(t )
on lines 19–22 (given change 2 above, all the calls to UpdateCounters have • = +).

�e resulting pseudocode for trièst-impr is presented in Alg. 2.

Counters. If we are interested only in estimating the global number of triangles in G(t ), trièst-
impr needs to maintain only the counter τ and the edge sample S of size M , so it still requires space
O(M). If instead we are interested in estimating the local triangle counts, at any time t trièst-impr
maintains (non-zero) local counters only for the nodesu such that at least one triangle with a corner

5We are giving mascot-c a signi�cant advantage: if only space M were available, we should run mascot-c with a su�ciently
smaller p′ < p , otherwise there would be a constant probability that mascot-c would run out of memory.
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ALGORITHM 2 trièst-impr
Input: Insertion-only edge stream Σ, integer M ≥ 6

1: S ← ∅, t ← 0, τ ← 0
2: for each element (+, (u,v)) from Σ do
3: t ← t + 1
4: UpdateCounters(u,v)
5: if SampleEdge((u,v), t) then
6: S ← S ∪ {(u,v)}

7: function SampleEdge((u,v), t )
8: if t ≤ M then
9: return True

10: else if FlipBiasedCoin(Mt ) = heads then
11: (u ′,v ′) ← random edge from S
12: S ← S \ {(u ′,v ′)}
13: return True
14: return False

15: function UpdateCounters(u,v)
16: NSu,v ← N

S
u ∩ N

S
v

17: η = max{1, (t − 1)(t − 2)/(M(M − 1))}
18: for all c ∈ NSu,v do
19: τ ← τ + η
20: τc ← τc + η
21: τu ← τu + η
22: τv ← τv + η

u has been detected by the algorithm up until time t . �e number of such nodes may be greater
than O(M), but this is the price to pay to obtain estimations with lower variance (�m. 4.13).

4.2.1 Estimation. When queried for an estimation, trièst-impr returns the value of the corre-
sponding counter, unmodi�ed.

4.2.2 Analysis. We now present the analysis of the estimations computed by trièst-impr,
showing results involving their unbiasedness, their variance, and their concentration around their
expectation. Results analogous to those in �ms. 4.12, 4.13, and 4.15 hold for the local triangle
count for any u ∈ V (t ), replacing the global quantities with the corresponding local ones.

4.2.3 Expectation. As in trièst-base, the estimations by trièst-impr are exact at time t ≤ M
and unbiased for t > M . �e proof of the following theorem follows the same steps as the one for
�m 4.2, and can be found in App. A.2.

Theorem 4.12. We have τ (t ) = |∆(t ) | if t ≤ M and E
[
τ (t )

]
= |∆(t ) | if t > M .

4.2.4 Variance. We now show an upper bound to the variance of the trièst-impr estimations
for t > M . �e proof relies on a very careful analysis of the covariance of two triangles which
depends on the order of arrival of the edges in the stream (which we assume to be adversarial). For
any λ ∈ ∆(t ) we denote as tλ the time at which the last edge of λ is observed on the stream. Let z(t )
be the number of unordered pairs (λ,γ ) of distinct triangles in G(t ) that share an edge д and are
such that:

(1) д is neither the last edge of λ nor γ on the stream; and
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(2) min{tλ , tγ } > M + 1.
Theorem 4.13. �en, for any time t > M , we have

Var
[
τ (t )

]
≤ |∆(t ) |(η(t ) − 1) + z(t ) t − 1 −M

M
. (11)

�e bound to the variance presented in (11) is extremely pessimistic and loose. Speci�cally, it
does not contain the negative contribution to the variance given by the

(
|∆(t ) |

2
)
− z(t ) triangles that

do not satisfy the requirements in the de�nition of z(t ). Among these pairs there are, for example,
all pairs of triangles not sharing any edge, but also many pairs of triangles that share an edge, as the
de�nition of z(t ) consider only a subsets of these. All these pairs would give a negative contribution
to the variance, i.e., decrease the r.h.s. of (11), whose more correct form would be

|∆(t ) |(η(t ) − 1) + z(t ) t − 1 −M
M

+

((
|∆(t ) |

2

)
− z(t )

)
ωM,t

where ωM,t is (an upper bound to) the minimum negative contribution of a pair of triangles that do
not satisfy the requirements in the de�nition of z(t ). Sadly, computing informative upper bounds to
ωM,t is not straightforward, even in the restricted se�ing where only pairs of triangles not sharing
any edge are considered.

To prove �m. 4.13 we �rst need Lemma 4.14, whose proof is deferred to App. A.2.
For any time step t and any edge e ∈ E(t ), we denote with te the time step at which e is on the

stream. For any λ ∈ ∆(t ), let λ = (`1, `2, `3), where the edges are numbered in order of appearance
on the stream. We de�ne the event Dλ as the event that `1 and `2 are both in the edge sample S at
the end of time step tλ − 1.

Lemma 4.14. Let λ = (`1, `2, `3) and γ = (д1,д2,д3) be two disjoint triangles, where the edges are
numbered in order of appearance on the stream, and assume, w.l.o.g., that the last edge of λ is on the

stream before the last edge of γ . �en

Pr(Dγ | Dλ) ≤ Pr(Dγ ) .
We can now prove �m. 4.13.

Proof of Thm. 4.13. Assume |∆(t ) | > 0, otherwise trièst-impr estimation is deterministically
correct and has variance 0 and the thesis holds. Let λ ∈ ∆(t ) and let δλ be a random variable that
takes value ξ2,tλ−1 if both `1 and `2 are in S at the end of time step tλ − 1, and 0 otherwise. Since

Var [δλ] = ξ2,tλ−1 − 1 ≤ ξ2,t−1,

we have:

Var
[
τ (t )

]
= Var

[ ∑
λ∈∆(t )

δλ

]
=

∑
λ∈∆(t )

∑
γ ∈∆(t )

Cov
[
δλ ,δγ

]
=

∑
λ∈∆(t )

Var [δλ] +
∑

λ,γ ∈∆(t )
λ,γ

Cov
[
δλ ,δγ

]
≤ |∆(t ) |(ξ2,t−1 − 1) +

∑
λ,γ ∈∆(t )
λ,γ

(
E[δλδγ ] − E[δλ]E[δγ ]

)
≤ |∆(t ) |(ξ2,t−1 − 1) +

∑
λ,γ ∈∆(t )
λ,γ

(
E[δλδγ ] − 1

)
. (12)
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For any λ ∈ ∆(t ) de�ne qλ = ξ2,tλ−1. Assume now |∆(t ) | ≥ 2, otherwise we have r (t ) = w (t ) = 0
and the thesis holds as the second term on the r.h.s. of (12) is 0. Let now λ and γ be two distinct
triangles in ∆(t ) (hence t ≥ 5). We have

E
[
δλδγ

]
= qλqγ Pr

(
δλδγ = qλqγ

)
�e event “δλδγ = qλqγ ” is the intersection of events Dλ ∩ Dγ , where Dλ is the event that the
�rst two edges of λ are in S at the end of time step tλ − 1, and similarly for Dγ . We now look at
Pr(Dλ ∩ Dγ ) in the various possible cases.

Assume that λ and γ do not share any edge, and, w.l.o.g., that the third (and last) edge of λ
appears on the stream before the third (and last) edge of γ , i.e., tλ < tγ . From Lemma 4.14 and
Lemma 4.1 we then have

Pr(Dλ ∩ Dγ ) = Pr(Dγ |Dλ) Pr(Dλ) ≤ Pr(Dγ ) Pr(Dλ) ≤
1

qλqγ
.

Consider now the case where λ and γ share an edge д. W.l.o.g., let us assume that tλ ≤ tγ (since
the shared edge may be the last on the stream both for λ and for γ , we may have tλ = tγ ). �ere
are the following possible sub-cases :

д is the last on the stream among all the edges of λ and γ In this case we have tλ = tγ .
�e event “Dλ ∩Dγ ” happens if and only if the four edges that, together with д, compose λ
and γ are all in S at the end of time step tλ − 1. �en, from Lemma 4.1 we have

Pr(Dλ ∩ Dγ ) =
1

ξ4,tλ−1
≤

1
qλ

(M − 2)(M − 3)
(tλ − 3)(tλ − 4) ≤

1
qλ

M(M − 1)
(tλ − 1)(tλ − 2) ≤

1
qλqγ

.

д is the last on the stream among all the edges of λ and the �rst among all the edges of γ
In this case, we have that Dλ and Dγ are independent. Indeed the fact that the �rst two
edges of λ (neither of which is д) are in S when д arrives on the stream has no in�uence
on the probability that д and the second edge of γ are inserted in S and are not evicted
until the third edge of γ is on the stream. Hence we have

Pr(Dλ ∩ Dγ ) = Pr(Dγ ) Pr(Dλ) =
1

qλqγ
.

д is the last on the stream among all the edges of λ and the second among all the edges of γ
In this case we can follow an approach similar to the one in the proof for Lemma 4.14 and
have that

Pr(Dλ ∩ Dγ ) ≤ Pr(Dγ ) Pr(Dλ) ≤
1

qλqγ
.

�e intuition behind this is that if the �rst two edges of λ are in S when д is on the stream,
their presence lowers the probability that the �rst edge of γ is in S at the same time, and
hence that the �rst edge of γ and д are in S when the last edge of γ is on the stream.

д is not the last on the stream among all the edges of λ �ere are two situations to con-
sider, or be�er, one situation and all other possibilities. �e situation we consider is that
(1) д is the �rst edge of γ on the stream; and
(2) the second edge of γ to be on the stream is on the stream at time t2 > tλ .

Suppose this is the case. Recall that if Dλ is veri�ed, than we know that д is in S at the
beginning of time step tλ . De�ne the following events:
• E1: “the set of edges evicted from S between the beginning of time step tλ and the

beginning of time step t2 does not contain д.”
• E2: “the second edge of γ , which is on the stream at time t2, is inserted in S and the

edge that is evicted is not д.”
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• E3: “the set of edges evicted from S between the beginning of time step t2 + 1 and the
beginning of time step tγ does not contain either д or the second edge of γ .”

We can then write

Pr(Dγ | Dλ) = Pr(E1 | Dλ) Pr(E2 | E1 ∩ Dλ) Pr(E3 | E2 ∩ E1 ∩ Dλ) .

We now compute the probabilities on the r.h.s., where we denote with 1t2>M (1) the function
that has value 1 if t2 > M , and value 0 otherwise:

Pr(E1 | Dλ) =

t2−1∏
j=max{tλ,M+1}

((
1 − M

j

)
+
M

j

(
M − 1
M

))
=

t2−1∏
j=max{tλ,M+1}

j − 1
j
=

max{tλ − 1,M}
max{M, t2 − 1} ;

Pr(E2 | E1 ∩ Dλ) =
M

max{t2,M}
M − 1t2>M (1)

M
=

M − 1t2>M (1)
max{t2,M}

;

Pr(E3 | E2 ∩ E1 ∩ Dλ) =

tγ −1∏
j=max{t2+1,M+1}

((
1 − M

j

)
+
M

j

(
M − 2
M

))
=

tγ −1∏
j=max{t2+1,M+1}

j − 2
j
=

max{t2,M}max{t2 − 1,M − 1}
max{tγ − 2,M − 1}max{tγ − 1,M} .

Hence, we have

Pr(Dγ | Dλ) =
max{tλ − 1,M}(M − 1t2>M (1))max{t2 − 1,M − 1}

max{M, t2 − 1}max{(tγ − 2)(tγ − 1),M(M − 1)} .

With a (somewhat tedious) case analysis we can verify that

Pr(Dγ | Dλ) ≤
1
qγ

max{M, tλ − 1}
M

.

Consider now the complement of the situation we just analyzed. In this case, two edges
of γ , that is, д and another edge h are on the stream before time tλ , in some non-relevant
order (i.e., д could be the �rst or the second edge of γ on the stream). De�ne now the
following events:
• E1: “h and д are both in S at the beginning of time step tλ .”
• E2: “the set of edges evicted from S between the beginning of time step tλ and the

beginning of time step tγ does not contain either д or h.”
We can then write

Pr(Dγ | Dλ) = Pr(E1 | Dλ) Pr(E2 | E1 ∩ Dλ) .

If tλ ≤ M + 1, we have that Pr(E1 | Dλ) = 1. Consider instead the case tλ > M + 1. If Dλ
is veri�ed, then both д and the other edge of λ are in S at the beginning of time step tλ .
At this time, all subsets of E(tλ−1) of size M and containing both д and the other edge of λ
have an equal probability of being S, from Lemma A.1. �ere are

(tλ−3
M−2

)
such sets. Among

these, there are
(tλ−4
M−3

)
sets that also contain h. �erefore, if tλ > M + 1, we have

Pr(E1 | Dλ) =

(tλ−4
M−3

)(tλ−3
M−2

) = M − 2
tλ − 3 .
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Considering what we said before for the case tλ ≤ M + 1, we then have

Pr(E1 | Dλ) = min
{
1, M − 2
tλ − 3

}
.

We also have

Pr(E2 | E1 ∩ Dλ) =

tγ −1∏
j=max{tλ,M+1}

j − 2
j
=

max{(tλ − 2)(tλ − 1),M(M − 1)}
max{(tγ − 2)(tγ − 1),M(M − 1)} .

�erefore,

Pr(Dγ | Dλ) = min
{
1, M − 2
tλ − 3

}
max{(tλ − 2)(tλ − 1),M(M − 1)}
max{(tγ − 2)(tγ − 1),M(M − 1)} .

With a case analysis, one can show that

Pr(Dγ | Dλ) ≤
1
qγ

max{M, tλ − 1}
M

.

To recap we have the following two scenarios when considering two distinct triangles γ and λ:
(1) if λ and γ share an edge and, assuming w.l.o.g. that the third edge of λ is on the stream no

later than the third edge of γ , and the shared edge is neither the last among all edges of λ
to appear on the stream nor the last among all edges of γ to appear on the stream, then we
have

Cov[δλ ,δγ ] ≤ E[δλδγ ] − 1 = qλqγ Pr(δλδγ = qλqγ ) − 1

≤ qλqγ
1

qλqγ

max{M, tλ − 1}
M

− 1 ≤ max{M, tλ − 1}
M

− 1 ≤ t − 1 −M
M

;

where the last inequality follows from the fact that tλ ≤ t and t − 1 ≥ M .
For the pairs (λ,γ ) such that tλ ≤ M + 1, we have max{M, tλ − 1}/M = 1 and therefore

Cov[δλ ,δγ ] ≤ 0. We should therefore only consider the pairs for which tλ > M + 1. �eir
number is given by z(t ).

(2) in all other cases, including when γ and λ do not share an edge, we have E[δλδγ ] ≤ 1, and
since E[δλ]E[δγ ] = 1, we have

Cov[δλ ,δγ ] ≤ 0 .

Hence, we can bound ∑
λ,γ ∈∆(t )
λ,γ

Cov[δλ ,δγ ] ≤ z(t )
t − 1 −M

M

and the thesis follows by combining this into (12). �

4.2.5 Concentration. We now show a concentration result on the estimation of trièst-impr,
which relies on Chebyshev’s inequality [31, �m. 3.6] and �m. 4.13.

Theorem 4.15. Let t ≥ 0 and assume |∆(t ) | > 0. For any ε,δ ∈ (0, 1), if

M > max
{√

2(t − 1)(t − 2)
δε2 |∆(t ) | + 2

+
1
4 +

1
2 ,

2z(t )(t − 1)
δε2 |∆(t ) |2 + 2z(t )

}
then |τ (t ) − |∆(t ) | | < ε |∆(t ) | with probability > 1 − δ .
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Proof. By Chebyshev’s inequality it is su�cient to prove that
Var[τ (t )]
ε2 |∆(t ) |2

< δ .

We can write
Var[τ (t )]
ε2 |∆(t ) |2

≤
1

ε2 |∆(t ) |

(
(η(t) − 1) + z(t ) t − 1 −M

M |∆(t ) |

)
.

Hence it is su�cient to impose the following two conditions:
Condition 1

δ

2 >
η(t) − 1
ε2 |∆(t ) |

(13)

>
1

ε2 |∆(t ) |

(t − 1)(t − 2) −M(M − 1)
M(M − 1) ,

which is veri�ed for:
M(M − 1) > 2(t − 1)(t − 2)

δε2 |∆(t ) | + 2
.

As t > M , we have 2(t−1)(t−2)
δε2 |∆(t ) |+2 > 0. �e condition in (13) is thus veri�ed for:

M >
1
2

(√
42(t − 1)(t − 2)
δε2 |∆(t ) | + 2

+ 1 + 1
)

Condition 2
δ

2 > z(t )
t − 1 −M
Mε2 |∆(t ) |2

,

which is veri�ed for:
M >

2z(t )(t − 1)
δε2 |∆(t ) |2 + 2z(t )

.

�e theorem follows. �

In �ms. 4.13 and 4.15, it is possible to replace the value z(t ) with the more interpretable r (t ),
which is agnostic to the order of the edges on the stream but gives a looser upper bound to the
variance.

4.3 Fully-dynamic algorithm – trièst-fd

trièst-fd computes unbiased estimates of the global and local triangle counts in a fully-dynamic

stream where edges are inserted/deleted in any arbitrary, adversarial order. It is based on random

pairing (RP) [16], a sampling scheme that extends reservoir sampling and can handle deletions.
�e idea behind the RP scheme is that edge deletions seen on the stream will be “compensated” by
future edge insertions. Following RP, trièst-fd keeps a counter di (resp. do) to keep track of the
number of uncompensated edge deletions involving an edge e that was (resp. was not) in S at the
time the deletion for e was on the stream.

When an edge deletion for an edge e ∈ E(t−1) is on the stream at the beginning of time step
t , then, if e ∈ S at this time, trièst-fd removes e from S (e�ectively decreasing the number of
edges stored in the sample by one) and increases di by one. Otherwise, it just increases do by one.
When an edge insertion for an edge e < E(t−1) is on the stream at the beginning of time step t , if
di + do = 0, then trièst-fd follows the standard reservoir sampling scheme. If |S| < M , then e is
deterministically inserted in S without removing any edge from S already in S, otherwise it is
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ALGORITHM 3 trièst-fd
Input: Fully-dynamic edge stream Σ, integer M ≥ 6

1: S ← ∅, di ← 0, do ← 0, t ← 0, s ← 0
2: for each element (•, (u,v)) from Σ do
3: t ← t + 1
4: s ← s • 1
5: if • = + then
6: if SampleEdge (u,v) then
7: UpdateCounters(+, (u,v)) . UpdateCounters is de�ned as in Alg. 1.
8: else if (u,v) ∈ S then
9: UpdateCounters(−, (u,v))

10: S ← S \ {(u,v)}
11: di ← di + 1
12: else do ← do + 1

13: function SampleEdge(u,v)
14: if do + di = 0 then
15: if |S| < M then
16: S ← S ∪ {(u,v)}
17: return True
18: else if FlipBiasedCoin(Mt ) = heads then
19: Select (z,w) uniformly at random from S
20: UpdateCounters(−, (z,w))
21: S ← (S \ {(z,w)}) ∪ {(u,v)}
22: return True
23: else if FlipBiasedCoin

(
di

di+do

)
= heads then

24: S ← S ∪ {(u,v)}
25: di ← di − 1
26: return True
27: else
28: do ← do − 1
29: return False

inserted in S with probability M/t , replacing an uniformly-chosen edge already in S. If instead
di +do > 0, then e is inserted in S with probability di/(di +do); since it must be di > 0, then it must
be |S| < M and no edge already in S needs to be removed. In any case, a�er having handled the
eventual insertion of e into S, the algorithm decreases di by 1 if e was inserted in S, otherwise
it decreases do by 1. trièst-fd also keeps track of s(t ) = |E(t ) | by appropriately incrementing or
decrementing a counter by 1 depending on whether the element on the stream is an edge insertion
or deletion. �e pseudocode for trièst-fd is presented in Alg. 3 where the UpdateCounters
procedure is the one from Alg. 1.

4.3.1 Estimation. We denote as M (t ) the size of S at the end of time t (we always have M (t ) ≤ M).
For any time t , let d (t )i and d (t )o be the value of the counters di and do at the end of time t respectively,
and let ω(t ) = min{M, s(t ) + d (t )i + d

(t )
o }. De�ne

κ(t ) = 1 −
2∑
j=0

(
s(t )

j

) (
d (t )i + d

(t )
o

ω(t ) − j

)/ (
s(t ) + d (t )i + d

(t )
o

ω(t )

)
. (14)
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For any three positive integers a,b, c s.t. a ≤ b ≤ c , de�ne6

ψa,b,c =

(
c

b

)/ (
c − a

b − a

)
=

a−1∏
i=0

c − i

b − i
.

When queried at the end of time t , for an estimation of the global number of triangles, trièst-fd
returns

ρ(t ) =

{
0 if M (t ) < 3
τ (t )
κ (t )ψ3,M (t ),s (t ) =

τ (t )
κ (t )

s (t )(s (t )−1)(s (t )−2)
M (t )(M (t )−1)(M (t )−2) othw.

trièst-fd can keep track of κ(t ) during the execution, each update of κ(t ) taking time O(1). Hence
the time to return the estimations is still O(1).

4.3.2 Analysis. We now present the analysis of the estimations computed by trièst-impr,
showing results involving their unbiasedness, their variance, and their concentration around their
expectation. Results analogous to those in �ms. 4.16, 4.17, and 4.18 hold for the local triangle
count for any u ∈ V (t ), replacing the global quantities with the corresponding local ones.

4.3.3 Expectation. Let t∗ be the �rst t ≥ M + 1 such that |E(t ) | = M + 1, if such a time step exists
(otherwise t∗ = +∞).

Theorem 4.16. We have ρ(t ) = |∆(t ) | for all t < t∗, and E
[
ρ(t )

]
= |∆(t ) | for t ≥ t∗.

�e proof, deferred to App. A.3, relies on properties of RP and on the de�nitions of κ(t ) and ρ(t ).
Speci�cally, it uses Lemma A.6, which is the correspondent of Lemma 4.1 but for RP, and some
additional technical lemmas (including an equivalent of Lemma 4.3 but for RP) and combine them
using the law of total expectation by conditioning on the value of M (t).

4.3.4 Variance.

Theorem 4.17. Let t > t∗ s.t. |∆(t ) | > 0 and s(t ) ≥ M . Suppose we have d (t ) = d (t )o + d
(t )
i ≤ αs

(t )

total unpaired deletions at time t , with 0 ≤ α < 1. If M ≥ 1
2
√
α ′−α

7 ln s(t ) for some α < α ′ < 1, we
have:

Var
[
ρ(t )

]
≤ (κ(t ))−2 |∆(t ) |

(
ψ3,M (1−α ′),s (t ) − 1

)
+ (κ(t ))−22

+ (κ(t ))−2r (t )
(
ψ 2

3,M (1−α ′),s (t )ψ
−1
5,M (1−α ′),s (t ) − 1

)
�e proof of �m. 4.17 is deferred to App. A.3. It uses two results on the variance of ρ(t )

conditioned on a speci�c value of M (t ) (Lemmas A.9 and A.10), and an analysis of the probability
distribution of M (t ) (Lemma A.11 and Corollary A.12). �ese results are then combined using the
law of total variance.

4.3.5 Concentration. �e following result relies on Chebyshev’s inequality and on �m. 4.17,
and the proof (reported in App. A.3) follows the steps similar to those in the proof for �m. 4.13.

6We follow the convention that
(0
0
)
= 1.
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Theorem 4.18. Let t ≥ t∗ s.t. |∆(t ) | > 0 and s(t ) ≥ M . Let d (t ) = d (t )o + d
(t )
i ≤ αs(t ) for some

0 ≤ α < 1. For any ε,δ ∈ (0, 1), if for some α < α ′ < 1

M >max
{

1
√
a′ − α

7 ln s(t ),

(1 − α ′)−1 ©« 3

√√√ 2s(t )(s(t ) − 1)(s(t ) − 2)
δε2 |∆(t ) |(κ(t ))2 + 2 |∆

(t ) |−2
|∆(t ) |

+ 2
ª®®¬ ,

(1 − α ′)−1

3

(
r (t )s(t )

δε2 |∆(t ) |2(κ(t ))−2 + 2r (t )

) }
then |ρ(t ) − |∆(t ) | | < ε |∆(t ) | with probability > 1 − δ .

4.4 Counting global and local triangles in multigraphs

We now discuss how to extend trièst to approximate the local and global triangle counts in
multigraphs.

4.4.1 TRIÈST-BASE on multigraphs. trièst-base can be adapted to work on multigraphs as
follows. First of all, the sample S should be considered a bag, i.e., it may contain multiple copies of
the same edge. Secondly, the function UpdateCounters must be changed as presented in Alg. 4, to
take into account the fact that inserting or removing an edge (u,v) from S respectively increases
or decreases the global number of triangles in GS by a quantity that depends on the product of the
number of edges (c,u) ∈ S and (c,v) ∈ S, for c in the shared neighborhood (inGS) of u and v (and
similarly for the local number of triangles incidents to c).

ALGORITHM 4 UpdateCounters function for trièst-base on multigraphs

1: function UpdateCounters((•, (u,v)))
2: NSu,v ← N

S
u ∩ N

S
v

3: for all c ∈ NSu,v do
4: yc,u ← number of edges between c and u in S
5: yc,v ← number of edges between c and v in S
6: yc ← yc,u · yc,v
7: τ ← τ • yc
8: τc ← τc • yc
9: τu ← τu • yc

10: τv ← τv • yc

For this modi�ed version of trièst-base, that we call trièst-base-m, an equivalent version of
Lemma 4.3 holds. �erefore, we can prove a result on the unbiasedness of trièst-base-m equivalent
(i.e., with the same statement) as �m. 4.2. �e proof of such result is also the same as the one for
�m. 4.2.

To analyze the variance of trièst-base-m, we need to take into consideration the fact that, in a
multigraph, a pair of triangles may share two edges, and the variance depends (also) on the number
of such pairs. Let r (t )1 be the number of unordered pairs of distinct triangles from ∆(t ) sharing an
edge and let r (t )2 be the number of unordered pairs of distinct triangles from ∆(t ) sharing two edges
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(such pairs may exist in a multigraph, but not in a simple graph). Let q(t ) =
(
|∆(t ) |

2
)
− r (t )1 − r

(t )
2 be

the number of unordered pairs of distinct triangles that do not share any edge.

Theorem 4.19. For any t > M , let f (t) = ξ (t ) − 1,

д(t) = ξ (t )
(M − 3)(M − 4)
(t − 3)(t − 4) − 1

and

h(t) = ξ (t )
(M − 3)(M − 4)(M − 5)
(t − 3)(t − 4)(t − 5) − 1 (≤ 0),

and

j(t) = ξ (t )
M − 3
t − 3 − 1 .

We have:

Var
[
ξ (t)τ (t )

]
= |∆(t ) | f (t) + r (t )1 д(t) + r (t )2 j(t) + q(t )h(t).

�e proof follows the same lines as the one for �m. 4.4, with the additional steps needed to take
into account the contribution of the r (t )2 pairs of triangles in G(t ) sharing two edges.

4.4.2 TRIÈST-IMPR on multigraphs. A variant trièst-impr-m of trièst-impr for multigraphs
can be obtained by using the function UpdateCounters de�ned in Alg. 4, modi�ed to increment7

the counters by η(t )y(t )c , rather than y(t )c , where η(t ) = max{1, (t − 1)(t − 2)/(M(M − 1))}. �e result
stated in �m. 4.12 holds also for the estimations computed by trièst-impr-m. An upper bound to
the variance of the estimations, similar to the one presented in �m. 4.13 for trièst-impr, could
potentially be obtained, but its derivation would involve a high number of special cases, as we have
to take into consideration the order of the edges in the stream.

4.4.3 TRIÈST-FD on multigraphs. trièst-fd can be modi�ed in order to provide an approxi-
mation of the number of global and local triangles on multigraphs observed as a stream of edge
deletions and deletions. It is however necessary to clearly state the data model. We assume that
for all pairs of vertices u,v ∈ V (t ), each edge connecting u and v is assigned a label that is unique
among the edges connecting u and v . An edge is therefore uniquely identi�ed by its endpoints and
its label as ((u,v), label). Elements of the stream are now in the form (•, (u,v), label), where • is
either + or −. �is assumption, somewhat strong, is necessary in order to apply the random pairing

sampling scheme [16] to fully-dynamic multigraph edge streams.
Within this model, we can obtain an algorithm trièst-fd-m for multigraphs by adapting trièst-

fd as follows. �e sample S is a set of elements ((u,v), label). When a deletion (−, (u,v), label) is
on the stream, the sample S is modi�ed if and only if ((u,v), label) belongs to S. �is change can
be implemented in the pseudocode from Alg. 3 by modifying line 8 to be

“else if ((u,v), label) ∈ S then” .

Additionally, the function UpdateCounters to be used is the one presented in Alg. 4.
We can prove a result on the unbiasedness of trièst-fd-m equivalent (i.e., with the same

statement) as �m. 4.16. �e proof of such result is also the same as the one for �m. 4.16. An upper
bound to the variance of the estimations, similar to the one presented in �m. 4.17 for trièst-fd,
could be obtained by considering the fact that in a multigraph two triangles can share two edges,
in a fashion similar to what we discussed in �m. 4.19.
7As in trièst-impr, all calls to UpdateCounters in trièst-impr-m have • = +. See also Alg. 2.
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4.5 Discussion

We now brie�y discuss over the algorithms we just presented, the techniques they use, and the
theoretical results we obtained for trièst, in order to highlight advantages, disadvantages, and
limitations of our approach.

On reservoir sampling. Our approach of using reservoir sampling to keep a random sample of
edges can be extended to many other graph mining problems, including approximate counting of
other subgraphs more or less complex than triangles (e.g., squares, trees with a speci�c structure,
wedges, cliques, and so on). �e estimations of such counts would still be unbiased, but as the
number of edges composing the subgraph(s) of interest increases, the variance of the estimators
also increases, because the probability that all edges composing a subgraph are in the sample (or all
but the last one when the last one arrives, as in the case of trièst-impr), decreases as their number
increases. Other works in the triangle counting literature [20, 36] use samples of wedges, rather
than edges. �ey perform worse than trièst in both accuracy and runtime (see Sect. 5), but the
idea of sampling and storing more complex structures rather than simple edges could be a potential
direction for approximate counting of larger subgraphs.

On the analysis of the variance. We showed an exact analysis of the variance of trièst-base but
for the other algorithms we presented upper bounds to the variance of the estimates. �ese bounds
can still be improved as they are not currently tight. For example, we already commented on the
fact that the bound in (11) does not include a number of negative terms that would tighten it (i.e.,
decrease the bound), and that could potentially be no smaller than the term depending on z(t ). �e
absence of such terms is due to the fact that it seems very challenging to obtain non-trivial upper
bounds to them that are valid for every t > M . Our proof for this bound uses a careful case-by-case
analysis, considering the di�erent situations for pair of triangles (e.g., sharing or not sharing an
edge, and considering the order of edges on the stream). It may be possible to obtain tighter bounds
to the variance by following a more holistic approach that takes into account the fact that the sizes
of the di�erent classes of triangle pairs are highly dependent on each other.

Another issue with the bound to the variance from (11) is that the quantity z(t ) depends on the
order of edges on the stream. As already discussed, the bound can be made independent of the
order by loosening it even more. Very recent developments in the sampling theory literature [12]
presented sampling schemes and estimators whose second-order sampling probabilities do not
depend on the order of the stream, so it should be possible to obtain such bounds also for the
triangle counting problem, but a sampling scheme di�erent than reservoir sampling would have to
be used, and a careful analysis is needed to establish its net advantages in terms of performances
and scalability to billion-edges graphs.

On the trade-o� between speed and accuracy. We concluded both previous paragraphs in this
subsection by mentioning techniques di�erent than reservoir sampling of edges as potential
directions to improve and extend our results. In both cases these techniques are more complex
not only in their analysis but also computationally. Given that the main goal of algorithms like
trièst is to make it possible to analyze graphs with billions (and possibly more) nodes, the gain
in accuracy need to be weighted against expected slowdowns in execution. As we show in our
experimental evaluation in the next section, trièst, especially in the trièst-impr variant, actually
seems to strike the right balance between accuracy and tradeo�, when compared with existing
contributions.
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5 EXPERIMENTAL EVALUATION

We evaluated trièst on several real-world graphs with up to a billion edges. �e algorithms were
implemented in C++,and ran on the Brown University CS department cluster.8 Each run employed
a single core and used at most 4 GB of RAM. �e code is available from h�p://bigdata.cs.brown.
edu/triangles.html. Most of this section is related to experiments on graphs, while results for
multigraphs are described in Sect 5.3.

Datasets. We created the streams from the following publicly available graphs (properties in
Table 2).

Patent (Co-Aut.) and Patent (Cit.) �e Patent (Co-Aut.) and Patent (Cit.) graphs are ob-
tained from a dataset of ≈ 2 million U.S. patents granted between ’75 and ’99 [18]. In Patent

(Co-Aut.), the nodes represent inventors and there is an edge with timestamp t between
two co-inventors of a patent if the patent was granted in year t . In Patent (Cit.), nodes are
patents and there is an edge (a,b) with timestamp t if patent a cites b and a was granted in
year t .

LastFm �e LastFm graph is based on a dataset [8, 39] of ≈ 20 million last.fm song listenings,
≈ 1 million songs and ≈ 1000 users. �ere is a node for each song and an edge between
two songs if ≥ 3 users listened to both on day t .

Yahoo!-Answers �e Yahoo! Answers graph is obtained from a sample of ≈ 160 million
answers to ≈ 25 millions questions posted on Yahoo! Answers [10]. An edge connects two
users at timemax(t1, t2) if they both answered the same question at times t1, t2 respectively.
We removed 6 outliers questions with more than 5000 answers.

Twitter �is is a snapshot [5, 25] of the Twi�er followers/following network with ≈ 41
million nodes and ≈ 1.5 billions edges. We do not have time information for the edges,
hence we assign a random timestamp to the edges (of which we ignore the direction).

Ground truth. To evaluate the accuracy of our algorithms, we computed the ground truth for our
smaller graphs (i.e., the exact number of global and local triangles for each time step), using an
exact algorithm. �e entire current graph is stored in memory and when an edge u,v is inserted (or
deleted) we update the current count of local and global triangles by checking how many triangles
are completed (or broken). As exact algorithms are not scalable, computing the exact triangle count
is feasible only for small graphs such as Patent (Co-Aut.), Patent (Cit.) and LastFm. Table 2 reports
the exact total number of triangles at the end of the stream for those graphs (and an estimate for
the larger ones using trièst-impr with M = 1000000).

5.1 Insertion-only case

We now evaluate trièst on insertion-only streams and compare its performances with those
of state-of-the-art approaches [20, 28, 36], showing that trièst has an average estimation error
signi�cantly smaller than these methods both for the global and local estimation problems, while
using the same amount of memory.

Estimation of the global number of triangles. Starting from an empty graph we add one edge at a
time, in timestamp order. Figure 1 illustrates the evolution, over time, of the estimation computed by
trièst-impr with M = 1,000,000. For smaller graphs for which the ground truth can be computed
exactly, the curve of the exact count is practically indistinguishable from trièst-impr estimation,
showing the precision of the method. �e estimations have very small variance even on the very
large Yahoo! Answers and Twi�er graphs (point-wise max/min estimation over ten runs is almost
8h�ps://cs.brown.edu/about/system/services/hpc/grid/
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Table 2. Properties of the dynamic graph streams analyzed. |V |, |E |, |Eu |, |∆| refer respectively to the number

of nodes in the graph, the number of edge addition events, the number of distinct edges additions, and the

maximum number of triangles in the graph (for Yahoo! Answers and Twi�er estimated with trièst-impr with

M = 1000000, otherwise computed exactly with the naı̈ve algorithm).

Graph |V | |E | |Eu | |∆|

Patent (Co-Aut.) 1,162,227 3,660,945 2,724,036 3.53 × 106

Patent (Cit.) 2,745,762 13,965,410 13,965,132 6.91 × 106

LastFm 681,387 43,518,693 30,311,117 1.13 × 109

Yahoo! Answers 2,432,573 1.21 × 109 1.08 × 109 7.86 × 1010

Twi�er 41,652,230 1.47 × 109 1.20 × 109 3.46 × 1010

coincident with the average estimation). �ese results show that trièst-impr is very accurate even
when storing less than a 0.001 fraction of the total edges of the graph.

Comparison with the state of the art. We compare quantitatively with three state-of-the-art
methods: mascot [28], Jha et al. [20] and Pavan et al. [36]. mascot is a suite of local triangle
counting methods (but provides also a global estimation). �e other two are global triangle counting
approaches. None of these can handle fully-dynamic streams, in contrast with trièst-fd. We �rst
compare the three methods to trièst for the global triangle counting estimation. mascot comes in
two memory e�cient variants: the basic mascot-c variant and an improved mascot-i variant.9
Both variants sample edges with �xed probability p, so there is no guarantee on the amount of
memory used during the execution. To ensure fairness of comparison, we devised the following
experiment. First, we run both mascot-c and mascot-i for ` = 10 times with a �xed p using the
same random bits for the two algorithms run-by-run (i.e. the same coin tosses used to select the
edges) measuring each time the number of edges M ′i stored in the sample at the end of the stream
(by construction this the is same for the two variants run-by-run). �en, we run our algorithms
using M = M ′i (for i ∈ [`]). We do the same to �x the size of the edge memory for Jha et al. [20]
and Pavan et al. [36].10 �is way, all algorithms use the same amount of memory for storing edges
(run-by-run).

We use the MAPE (Mean Average Percentage Error) to assess the accuracy of the global triangle
estimators over time. �e MAPE measures the average percentage of the prediction error with
respect to the ground truth, and is widely used in the prediction literature [19]. For t = 1, . . . ,T , let

∆
(t ) be the estimator of the number of triangles at time t , the MAPE is de�ned as 1

T
∑T

t=1

���� |∆(t ) |−∆(t )|∆(t ) |

����.11

In Fig. 2(a), we compare the average MAPE of trièst-base and trièst-impr as well as the two
mascot variants and the other two streaming algorithms for the Patent (Co-Aut.) graph, �xing
p = 0.01. trièst-impr has the smallest error of all the algorithms compared.

9In the original work [28], this variant had no su�x and was simply called mascot. We add the -i su�x to avoid confusion.
Another variant mascot-A can be forced to store the entire graph with probability 1 by appropriately selecting the edge
order (which we assume to be adversarial) so we do not consider it here.
10More precisely, we use M ′i /2 estimators in Pavan et al. as each estimator stores two edges. For Jha et al. we set the two
reservoirs in the algorithm to have each size M ′i /2. �is way, all algorithms use M ′i cells for storing (w)edges.
11�e MAPE is not de�ned for t s.t. ∆(t ) = 0 so we compute it only for t s.t. |∆(t ) | > 0. All algorithms we consider are
guaranteed to output the correct answer for t s.t. |∆(t ) | = 0.
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(a) Patent (Cit.)
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(b) LastFm
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(c) Yahoo! Answers
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(d) Twi�er

Fig. 1. Estimation by trièst-impr of the global number of triangles over time (intended as number of elements

seen on the stream). The max, min, and avg are taken over 10 runs. The curves are indistinguishable on
purpose, to highlight the fact that trièst-impr estimations have very small error and variance. For example,

the ground truth (for graphs for which it is available) is indistinguishable even from the max/min point-wise

estimations over ten runs. For graphs for which the ground truth is not available, the small deviations from

the avg suggest that the estimations are also close to the true value, given that our algorithms gives unbiased

estimations.

We now turn our a�ention to the e�ciency of the methods. Whenever we refer to one operation,
we mean handling one element on the stream, either one edge addition or one edge deletion. �e
average update time per operation is obtained by dividing the total time required to process the
entire stream by the number of operations (i.e., elements on the streams).

Figure 2(b) shows the average update time per operation in Patent (Co-Aut.) graph, �xing
p = 0.01. Both Jha et al. [20] and Pavan et al. [36] are up to ≈ 3 orders of magnitude slower than
the mascot variants and trièst. �is is expected as both algorithms have an update complexity
of Ω(M) (they have to go through the entire reservoir graph at each step), while both mascot
algorithms and trièst need only to access the neighborhood of the nodes involved in the edge
addition.12 �is allows both algorithms to e�ciently exploit larger memory sizes. We can use
e�ciently M up to 1 million edges in our experiments, which only requires few megabytes of
12We observe that Pavan et al. [36] would be more e�cient with batch updates. However, we want to estimate the triangles
continuously at each update. In their experiments they use batch sizes of million of updates for e�ciency.
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RAM.13 mascot is one order of magnitude faster than trièst (which runs in ≈ 28 micros/op),
because it does not have to handle edge removal from the sample, as it o�ers no guarantees on the
used memory. As we will show, trièst has much higher precision and scales well on billion-edges
graphs.

Table 3. Global triangle estimation MAPE for trièst and mascot. The rightmost column shows the reduction

in terms of the avg. MAPE obtained by using trièst. Rows with Y in column “Impr.” refer to improved

algorithms (trièst-impr and mascot-i) while those with N to basic algorithms (trièst-base and mascot-c).

Max. MAPE Avg. MAPE
Graph Impr. p mascot trièst mascot trièst Change

Patent (Cit.)

N 0.01 0.9231 0.2583 0.6517 0.1811 -72.2%
Y 0.01 0.1907 0.0363 0.1149 0.0213 -81.4%
N 0.1 0.0839 0.0124 0.0605 0.0070 -88.5%
Y 0.1 0.0317 0.0037 0.0245 0.0022 -91.1%

Patent (Co-aut.)

N 0.01 2.3017 0.3029 0.8055 0.1820 -77.4%
Y 0.01 0.1741 0.0261 0.1063 0.0177 -83.4%
N 0.1 0.0648 0.0175 0.0390 0.0079 -79.8%
Y 0.1 0.0225 0.0034 0.0174 0.0022 -87.2%

LastFm

N 0.01 0.1525 0.0185 0.0627 0.0118 -81.2%
Y 0.01 0.0273 0.0046 0.0141 0.0034 -76.2%
N 0.1 0.0075 0.0028 0.0047 0.0015 -68.1%
Y 0.1 0.0048 0.0013 0.0031 0.0009 -72.1%

Given the slow execution of the other algorithms on the larger datasets we compare in details
trièst only with mascot.14 Table 3 shows the average MAPE of the two approaches. �e results
con�rm the pa�ern observed in Figure 2(a): trièst-base and trièst-impr both have an average error
signi�cantly smaller than that of the basic mascot-c and improved mascot variant respectively.
We achieve up to a 91% (i.e., 9-fold) reduction in the MAPE while using the same amount of memory.
�is experiment con�rms the theory: reservoir sampling has overall lower or equal variance in all
steps for the same expected total number of sampled edges.

To further validate this observation we run trièst-impr and the improved mascot-i variant
using the same (expected memory) M = 10000. Figure 3 shows the max-min estimation over 10
runs and the standard deviation of the estimation over those runs. trièst-impr shows signi�cantly
lower standard deviation (hence variance) over the evolution of the stream, and the max and min
lines are also closer to the ground truth. �is con�rms our theoretical observations in the previous
sections. Even with very low M (about 2/10000 of the size of the graph) trièst gives high-quality
estimations.

Local triangle counting. We compare the precision in local triangle count estimation of trièst
with that of mascot [28] using the same approach of the previous experiment. We can not compare
with Jha et al. and Pavan et al. algorithms as they provide only global estimation. As in [28], we
13�e experiments by Jha et al. [20] use M in the order of 103, and in those by Pavan et al. [36], large M values require
large batches for e�ciency.
14We a�empted to run the other two algorithms but they did not complete a�er 12 hours for the larger datasets in Table 3
with the prescribed p parameter se�ing.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:30 Lorenzo De Stefani, Alessandro Epasto, Ma�eo Riondato, and Eli Upfal

 0.01

 0.1

 1

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g

. 
M

a
p

e

(a) MAPE

 1

 10

 100

 1000

 10000

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g
. 
m

ic
ro

s
e
c
s
 p

e
r 

u
p
d
a
te

(b) Update Time

Fig. 2. Average MAPE and average update time of the various methods on the Patent (Co-Aut.) graph with

p = 0.01 (for mascot, see the main text for how we computed the space used by the other algorithms) –

insertion only. trièst-impr has the lowest error. Both Pavan et al. and Jha et al. have very high update times

compared to our method and the two mascot variants.
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Fig. 3. Accuracy and stability of the estimation of trièst-impr with M = 10000 and of mascot-i with same

expected memory, on LastFM, over 10 runs. trièst-impr has a smaller standard deviation and moreover

the max/min estimation lines are closer to the ground truth. Average estimations not shown as they are

qualitatively similar.

measure the Pearson coe�cient and the average ε error (see [28] for de�nitions). In Table 4 we
report the Pearson coe�cient and average ε error over all timestamps for the smaller graphs.15

trièst (signi�cantly) improves (i.e., has higher correlation and lower error) over the state-of-the-art
mascot, using the same amount of memory.

Trade-o�s between memory and accuracy. We study the trade-o�s between the sample size M ,
the running time, and the accuracy of the estimators. Figure 4(a) shows the trade-o�s between the
accuracy of the estimation (as MAPE) and the size M for the smaller graphs for which the ground

15For e�ciency, in this test we evaluate the local number of triangles of all nodes every 1000 edge updates.
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TRIÈST: Counting Triangles in Fully-dynamic Streams with Fixed Memory Size 1:31

Table 4. Comparison of the quality of the local triangle estimations between our algorithms and the state-

of-the-art approach in [28]. Rows with Y in column “Impr.” refer to improved algorithms (trièst-impr and

mascot-i) while those with N to basic algorithms (trièst-base and mascot-c). In virtually all cases we

significantly outperform mascot using the same amount of memory.

Avg. Pearson Avg. ε Err.
Graph Impr. p mascot trièst Change mascot trièst Change

LastFm

Y
0.1 0.99 1.00 +1.18% 0.79 0.30 -62.02%
0.05 0.97 1.00 +2.48% 0.99 0.47 -52.79%
0.01 0.85 0.98 +14.28% 1.35 0.89 -34.24%

N
0.1 0.97 0.99 +2.04% 1.08 0.70 -35.65%
0.05 0.92 0.98 +6.61% 1.32 0.97 -26.53%
0.01 0.32 0.70 +117.74% 1.48 1.34 -9.16%

Patent (Cit.)

Y
0.1 0.41 0.82 +99.09% 0.62 0.37 -39.15%
0.05 0.24 0.61 +156.30% 0.65 0.51 -20.78%
0.01 0.05 0.18 +233.05% 0.65 0.64 -1.68%

N
0.1 0.16 0.48 +191.85% 0.66 0.60 -8.22%
0.05 0.06 0.24 +300.46% 0.67 0.65 -3.21%
0.01 0.00 0.003 +922.02% 0.86 0.68 -21.02%

Patent (Co-aut.)

Y
0.1 0.55 0.87 +58.40% 0.86 0.45 -47.91%
0.05 0.34 0.71 +108.80% 0.91 0.63 -31.12%
0.01 0.08 0.26 +222.84% 0.96 0.88 -8.31%

N
0.1 0.25 0.52 +112.40% 0.92 0.83 -10.18%
0.05 0.09 0.28 +204.98% 0.92 0.92 0.10%
0.01 0.01 0.03 +191.46% 0.70 0.84 20.06%

truth number of triangles can be computed exactly using the naı̈ve algorithm. Even with small M ,
trièst-impr achieves very low MAPE value. As expected, larger M corresponds to higher accuracy
and for the same M trièst-impr outperforms trièst-base.

Figure 4(b) shows the average time per update in microseconds (µs) for trièst-impr as function
of M . Some considerations on the running time are in order. First, a larger edge sample (larger
M) generally requires longer average update times per operation. �is is expected as a larger
sample corresponds to a larger sample graph on which to count triangles. Second, on average
a few hundreds microseconds are su�cient for handling any update even in very large graphs
with billions of edges. Our algorithms can handle hundreds of thousands of edge updates (stream
elements) per second, with very small error (Fig. 4(a)), and therefore trièst can be used e�ciently
and e�ectively in high-velocity contexts. �e larger average time per update for Patent (Co-Auth.)
can be explained by the fact that the graph is relatively dense and has a small size (compared to
the larger Yahoo! and Twi�er graphs). More precisely, the average time per update (for a �xed M)
depends on two main factors: the average degree and the length of the stream. �e denser the
graph is, the higher the update time as more operations are needed to update the triangle count
every time the sample is modi�ed. On the other hand, the longer the stream, for a �xed M , the
lower is the frequency of updates to the reservoir (it can be show that the expected number of
updates to the reservoir is O(M(1 + log( tM ))) which grows sub-linearly in the size of the stream t ).
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�is explains why the average update time for the large and dense Yahoo! and Twi�er graphs is so
small, allowing the algorithm to scale to billions of updates.

 0.001

 0.01

 0.1

 1

patent-cit

lastfm

M
A

P
E

M=100000 Base
M=500000 Base

M=1000000 Base
M=100000 Impr
M=500000 Impr

M=1000000 Impr

(a) Trade-o� between M and MAPE

 1

 10

 100

 1000

 10000

patent-cit

patent-coaut

lastfm

tw
itter

yahoo
A

v
g

. 
m

ic
ro

s
e

c
s
 p

e
r 

u
p

d
a

te M=100000 Impr
M=500000 Impr

M=1000000 Impr

(b) Trade-o� bewtween M and average time per update
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Fig. 4. Trade-o�s between M and MAPE and average time per update in µs – edge insertion only. Larger M
implies lower errors but generally higher update times.

Alternative edge orders. In all previous experiments the edges are added in their natural order
(i.e., in order of their appearance).16 While the natural order is the most important use case, we
have assessed the impact of other ordering on the accuracy of the algorithms. We experiment with
both the uniform-at-random (u.a.r.) order of the edges and the random BFS order: until all the
graph is explored a BFS is started from a u.a.r. unvisited node and edges are added in order of their
visit (neighbors are explored in u.a.r. order). �e results for the random BFS order and u.a.r. order
(Fig. 5) con�rm that trièst has the lowest error and is very scalable in every tested ordering.

5.2 Fully-dynamic case

We evaluate trièst-fd on fully-dynamic streams. We cannot compare trièst-fd with the algorithms
previously used [20, 28, 36] as they only handle insertion-only streams.

In the �rst set of experiments we model deletions using the widely used sliding window model,
where a sliding window of the most recent edges de�nes the current graph. �e sliding window
model is of practical interest as it allows to observe recent trends in the stream. For Patent (Co-Aut.)
& (Cit.) we keep in the sliding window the edges generated in the last 5 years, while for LastFm we
keep the edges generated in the last 30 days. For Yahoo! Answers we keep the last 100 millions
edges in the window17.

Figure 6 shows the evolution of the global number of triangles in the sliding window model using
trièst-fd using M = 200,000 (M = 1,000,000 for Yahoo! Answers). �e sliding window scenario is
signi�cantly more challenging than the addition-only case (very o�en the entire sample of edges is
�ushed away) but trièst-fd maintains good variance and scalability even when, as for LastFm and
Yahoo! Answers, the global number of triangles varies quickly.

16Excluding Twi�er for which we used the random order, given the lack of timestamps.
17�e sliding window model is not interesting for the Twi�er dataset as edges have random timestamps. We omit the results
for Twi�er but trièst-fd is fast and has low variance.
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Fig. 5. Average MAPE on Patent (Co-Aut.), with p = 0.01 (for mascot, see the main text for how we computed

the space used by the other algorithms) – insertion only in Random BFS order and in uniform-at-random

order. trièst-impr has the lowest error.

Continuous monitoring of triangle counts with trièst-fd allows to detect pa�erns that would
otherwise be di�cult to notice. For LastFm (Fig. 6(c)) we observe a sudden spike of several order of
magnitudes. �e dataset is anonymized so we cannot establish which songs are responsible for
this spike. In Yahoo! Answers (Fig. 6(d)) a popular topic can create a sudden (and shortly lived)
increase in the number of triangles, while the evolution of the Patent co-authorship and co-citation
networks is slower, as the creation of an edge requires �ling a patent (Fig. 6(a) and (b)). �e almost
constant increase over time18 of the number of triangles in Patent graphs is consistent with previous
observations of densi�cation in collaboration networks as in the case of nodes’ degrees [27] and
the observations on the density of the densest subgraph [15].

Table 5 shows the results for both the local and global triangle counting estimation provided by
trièst-fd. In this case we can not compare with previous works, as they only handle insertions. It
is evident that precision improves with M values, and even relatively small M values result in a
low MAPE (global estimation), high Pearson correlation and low ε error (local estimation). Figure 7
shows the tradeo�s between memory (i.e., accuracy) and time. In all cases our algorithm is very
fast and it presents update times in the order of hundreds of microseconds for datasets with billions
of updates (Yahoo! Answers).

Alternative models for deletion. We evaluate trièst-fd using other models for deletions than the
sliding window model. To assess the resilience of the algorithm to massive deletions we run the
following experiments. We added edges in their natural order but each edge addition is followed
with probability q by a mass deletion event where each edge currently in the the graph is deleted
with probability d independently. We run experiments with q = 3,000,000−1 (i.e., a mass deletion
expected every 3 millions edges) and d = 0.80 (in expectation 80% of edges are deleted). �e results
are shown in Table 6.

We observe that trièst-fd maintains a good accuracy and scalability even in face of a massive
(and unlikely) deletions of the vast majority of the edges: e.g., for LastFM with M = 200000 (resp.
M = 1,000,000) we observe 0.04 (resp. 0.006) Avg. MAPE.
18�e decline at the end is due to the removal of the last edges from the sliding window a�er there are no more edge
additions.
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Fig. 6. Evolution of the global number of triangles in the fully-dynamic case (sliding window model for edge

deletion). The curves are indistinguishable on purpose, to remark the fact that trièst-fd estimations are

extremely accurate and consistent. We comment on the observed pa�erns in the text.

Table 5. Estimation errors for trièst-fd.

Avg. Global Avg. Local
Graph M MAPE Pearson ε Err.

LastFM 200000 0.005 0.980 0.020
1000000 0.002 0.999 0.001

Patent (Co-Aut.) 200000 0.010 0.660 0.300
1000000 0.001 0.990 0.006

Patent (Cit.) 200000 0.170 0.090 0.160
1000000 0.040 0.600 0.130

5.3 Multigraphs

We now evaluate our algorithms designed for multigraphs. We obtained multigraph versions of
Patent (Co-Auth.) (resp. LastFM) by allowing multiple edges to be placed between pairs of authors
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Table 6. Estimation errors for trièst-fd – mass deletion experiment, q = 3,000,000−1
and d = 0.80.

Avg. Global Avg. Local
Graph M MAPE Pearson ε Err.

LastFM 200000 0.040 0.620 0.53
1000000 0.006 0.950 0.33

Patent (Co-Aut.) 200000 0.060 0.278 0.50
1000000 0.006 0.790 0.21

Patent (Cit.) 200000 0.280 0.068 0.06
1000000 0.026 0.510 0.04

(resp. songs) at multiple time steps (i.e., edges with di�erent timestamps) if the two authors co-
author multiple papers (resp. the songs are co-listened on di�erent dates). We ran our insertion-only
algorithms on these multigraphs and report the results in the next paragraphs.

Figure 8 shows the evolution of the number of triangles in the two datasets as estimated by our
trièst-impr-m algorithm using M = 100,000. For these smaller datasets we are able to compute the
exact number of triangles. Our algorithm is very precise with average, min and max estimations
close to the ground truth. �e overall observations made for the simple graph case also hold for
the multigraph case: our suite of algorithms allows precise and e�cient estimation of the number
of triangles with limited memory.

Figure 9 shows the average update time in microseconds using trièst-impr-m algorithm in our
multigraph datasets: few microseconds are su�cient on average to update the triangle estimation,
which is consistent with the results of the previous sections.

Finally we evaluate the accuracy of the estimation using our trièst-base-m and trièst-impr-m
algorithms. �e results are shown in Table 7. We observe that trièst-base-m and trièst-impr-m
maintain a good accuracy with performance comparable to the one observed for the simple graph
case.
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Fig. 8. Evolution of the global number of triangles in the insertion-only case on multigraphs using trièst-

impr-m and M = 100,000. The algorithm estimations are consistently very accurate, and the curves are shown

as almost undistinguishable on purpose to highlight this fact.
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Table 7. Estimation errors for trièst-base-m and trièst-impr-m – multigraphs.

Global Error trièst-base-m Global Error trièst-impr-m
Graph M Avg. MAPE Max MAPE Avg. MAPE Max MAPE

LastFM 100000 0.015 0.024 0.008 0.015
1000000 0.006 0.012 0.003 0.008

Paten (Co-Aut.) 100000 0.068 0.141 0.023 0.049
1000000 0.011 0.017 0.003 0.006
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6 CONCLUSIONS

We presented trièst, the �rst suite of algorithms that use reservoir sampling and its variants to
continuously maintain unbiased, low-variance estimates of the local and global number of triangles
in fully-dynamic graphs streams of arbitrary edge/vertex insertions and deletions using a �xed,
user-speci�ed amount of space. Our experimental evaluation shows that trièst outperforms
state-of-the-art approaches and achieves high accuracy on real-world datasets with more than one
billion of edges, with update times of hundreds of microseconds.

APPENDIX

A ADDITIONAL THEORETICAL RESULTS

In this section we present the theoretical results (statements and proofs) not included in the main
body.

A.1 Theoretical results for trièst-base

Before proving Lemma 4.1, we need to introduce the following lemma, which states a well known
property of the reservoir sampling scheme.

Lemma A.1 ([42, Sect. 2]). For any t > M , let A be any subset of E(t ) of size |A| = M . �en, at the

end of time step t ,

Pr(S = A) =
1(
|E (t ) |
M

) = 1( t
M

) ,
i.e., the set of edges in S at the end of time t is a subset of E(t ) of sizeM chosen uniformly at random

from all subsets of E(t ) of the same size.

Proof of Lemma 4.1. If k > min{M, t}, we have Pr(B ⊆ S) = 0 because it is impossible for B to
be equal to S in these cases. From now on we then assume k ≤ min{M, t}.

If t ≤ M , then E(t ) ⊆ S and Pr(B ⊆ S) = 1 = ξ−1
k,t .

Assume instead that t > M , and let B be the family of subsets of E(t ) that 1. have size M , and
2. contain B:

B = {C ⊂ E(t ) : |C | = M,B ⊆ C} .

We have
|B| =

(
|E(t ) | − k

M − k

)
=

(
t − k

M − k

)
. (15)

From this and and Lemma A.1 we then have
Pr(B ⊆ S) = Pr(S ∈ B) =

∑
C ∈B

Pr(S = C)

=

( t−k
M−k

)( t
M

) = ( t−k
M−k

)( t−k
M−k

) ∏k−1
i=0

t−i
M−i

=

k−1∏
i=0

M − i

t − i
= ξ−1

k,t .

�

A.1.1 Expectation.

Proof of Lemma 4.3. We only show the proof for τ , as the proof for the local counters follows
the same steps.

�e proof proceeds by induction. �e thesis is true a�er the �rst call to UpdateCounters at time
t = 1. Since only one edge is inS at this point, we have ∆S = 0, andNSu,v = ∅, so UpdateCounters
does not modify τ , which was initialized to 0. Hence τ = 0 = ∆S .
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Assume now that the thesis is true for any subsequent call to UpdateCounters up to some point
in the execution of the algorithm where an edge (u,v) is inserted or removed from S. We now show
that the thesis is still true a�er the call to UpdateCounters that follows this change in S. Assume
that (u,v) was inserted in S (the proof for the case of an edge being removed from S follows the
same steps). Let Sb = S \ {(u,v)} and τ b be the value of τ before the call to UpdateCounters and,
for any w ∈ VSb , let τ b

w be the value of τw before the call to UpdateCounters. Let ∆Su,v be the
set of triangles in GS that have u and v as corners. We need to show that, a�er the call, τ = |∆S |.
Clearly we have ∆S = ∆S

b
∪ ∆Su,v and ∆S

b
∩ ∆Su,v = ∅, so

|∆S | = |∆S
b
| + |∆Su,v |

We have |∆Su,v | = |NSu,v, | and, by the inductive hypothesis, we have that τ b = |∆S
b
|. Since

UpdateCounters increments τ by |NSu,v, |, the value of τ a�er UpdateCounters has completed is
exactly |∆S |. �

We can now prove �m. 4.2 on the unbiasedness of the estimation computed by trièst-base
(and on their exactness for t ≤ M).

Proof of Thm. 4.2. We prove the statement for the estimation of global triangle count. �e
proof for the local triangle counts follows the same steps.

If t ≤ M , we have GS = G(t ) and from Lemma 4.3 we have τ (t ) = |∆S | = |∆(t ) |, hence the thesis
holds.

Assume now that t > M , and assume that |∆(t ) | > 0, otherwise, from Lemma 4.3, we have
τ (t ) = |∆S | = 0 and trièst-base estimation is deterministically correct. Let λ = (a,b, c) ∈ ∆(t ),
(where a,b, c are edges in E(t )) and let δ (t )λ be a random variable that takes value ξ (t ) if λ ∈ ∆S (i.e.,
{a,b, c} ⊆ S) at the end of the step instant t , and 0 otherwise. From Lemma 4.1, we have that

E
[
δ (t )λ

]
= ξ (t ) Pr({a,b, c} ⊆ S) = ξ (t ) 1

ξ3,t
= ξ (t )

1
ξ (t )
= 1 . (16)

We can write
ξ (t )τ (t ) =

∑
λ∈∆(t )

δ (t )λ

and from this, (16), and linearity of expectation, we have

E
[
ξ (t )τ (t )

]
=

∑
λ∈∆(t )

E
[
δ (t )λ

]
= |∆(t ) | .

�

A.1.2 Concentration.

Proof of Lemma 4.7. Using the law of total probability, we have

Pr (f (Sin) = 1) =
t∑

k=0
Pr (f (Sin) = 1 | |Sin | = k ) Pr(|Sin | = k)

≥ Pr (f (Sin) = 1 | |Sin | = M ) Pr(|Sin | = M)

≥ Pr (f (Smix) = 1) Pr (|Sin | = M) , (17)
where the last inequality comes from Lemma A.1: the set of edges included in Smix is a uniformly-
at-random subset of M edges from E(t ), and the same holds for Sin when conditioning its size being
M .
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Using the Stirling approximation
√

2πn(ne )
n ≤ n! ≤ e

√
n(ne )

n for any positive integer n, we have

Pr (|Sin | = M) =

(
t

M

) (
M

t

)M (
t −M

t

)t−M
≥

t t
√
t
√

2πe−t

e2
√
M
√
t −Me−tMM (t −M)t−M

MM (t −M)t−M

t t

≥
1

e
√
M
.

Plugging this into (17) concludes the proof. �

Fact A.2. For any x > 2, we have

x2

(x − 1)(x − 2) ≤ 1 + 4
x − 2 .

Proof of Lemma 4.10. We start by looking at the ratio between t (t−1)(t−2)
M (M−1)(M−2) and (t/M)3. We

have:

1 ≤ t(t − 1)(t − 2)
M(M − 1)(M − 2)

(
M

t

)3
=

M2

(M − 1)(M − 2)
(t − 1)(t − 2)

t2

≤
M2

(M − 1)(M − 2)

≤ 1 + 4
M − 2

where the last step follows from Fact A.2. Using this, we obtain���ϕ(t ) − ϕ(t )mix

��� = ����τ (t ) t(t − 1)(t − 2)
M(M − 1)(M − 2) − τ

(t )
( t
M

)3
����

=

�����τ (t ) ( tM )3
(

t(t − 1)(t − 2)
M(M − 1)(M − 2)

(
M

t

)3
− 1

)�����
≤ τ (t )

( t
M

)3 4
M − 2

= ϕ(t )mix
4

M − 2 .

�

A.1.3 Variance comparison. We now prove Lemma 4.11, about the fact that the variance of the
estimations computed by trièst-base is smaller, for most of the stream, than the variance of the
estimations computed by mascot-c [28]. We �rst need the following technical fact.

Fact A.3. For any x > 42, we have

x2

(x − 3)(x − 4) ≤ 1 + 8
x
.

Proof of Lemma 4.11. We focus on t > M > 42 otherwise the theorem is immediate. We show
that for such conditions f (M, t) < f̄ (M/T ) and д(M, t) < д̄(M/T ). Using the fact that t ≤ αT and
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Fact A.2, we have

f (M, t) − f̄ (M/T ) =
t(t − 1)(t − 2)

M(M − 1)(M − 2) −
T 3

M3

<
α3T 3

M3
M2

(M − 1)(M − 2) −
T 3

M3

≤
α3T 3

M3

(
1 + 4

M − 2

)
−

T 3

M3

≤
T 3

M3

(
α3 +

4α3

M − 2 − 1
)
. (18)

Given that T and M are ≥ 42, the r.h.s. of (18) is non-positive i�

α3 +
4α3

M − 2 − 1 ≤ 0 .

Solving for M we have that the above is veri�ed when M ≥ 4α 3

1−α 3 + 2. �is is always true given our
assumption that M > max( 8α

1−α , 42): for any 0 < α < 0.6, we have 4α 3

1−α 3 + 2 < 42 ≤ M and for any
0.6 ≤ α < 1 we have 4α 3

1−α 3 + 2 < 8α
1−α ≤ M . Hence the r.h.s. of (18) is ≤ 0 and f (M, t) < f̄ (M/T ).

We also have:

д(M, t) − д̄(M/T ) =
t(t − 1)(t − 2)(M − 3)(M − 4)
(t − 3)(t − 4)M(M − 1)(M − 2) −

T

M

<
t

M

t2

(t − 3)(t − 4) −
T

M

≤
t

M

(
1 + 8

t

)
−

T

M
, (19)

where the last inequality follow from Fact A.3, since t > M > 42. Now, from (19) since t ≤ αT and
t > M , we can write:

д(M, t) − д̄(M/T ) <
T

M

(
α +

8α
M
− 1

)
.

�e r.h.s. of this equation is non-positive given the assumption M > 8α
1−α , hence д(M, t) < д̄(M/T ).

�

A.2 Theoretical results for trièst-impr

A.2.1 Expectation.

Proof of Thm. 4.12. If t ≤ M trièst-impr behaves exactly like trièst-base, and the statement
follows from Lemma 4.2.

Assume now t > M and assume that |∆(t ) | > 0, otherwise, the algorithm deterministically
returns 0 as an estimation and the thesis follows. Let λ ∈ ∆(t ) and denote with a, b, and c the
edges of λ and assume, w.l.o.g., that they appear in this order (not necessarily consecutively) on the
stream. Let tλ be the time step at which c is on the stream. Let δλ be a random variable that takes
value ξ2,tλ−1 if a and b are in S at the end of time step tλ − 1, and 0 otherwise. Since it must be
tλ − 1 ≥ 2, from Lemma 4.1 we have that

Pr
(
δλ = ξ2,tλ−1

)
=

1
ξ2,tλ−1

. (20)
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When c = (u,v) is on the stream, i.e., at time tλ , trièst-impr calls UpdateCounters and increments
the counter τ by |NSu,v |ξ2,tλ−1, where |NSu,v | is the number of triangles with (u,v) as an edge in
∆S∪{c } . All these triangles have the corresponding random variables taking the same value ξ2,tλ−1.
�is means that the random variable τ (t ) can be expressed as

τ (t ) =
∑
λ∈∆(t )

δλ .

From this, linearity of expectation, and (20), we get

E
[
τ (t )

]
=

∑
λ∈∆(t )

E[δλ] =
∑
λ∈∆(t )

ξ2,tλ−1 Pr
(
δλ = ξ2,tλ−1

)
=

∑
λ∈∆(t )

ξ2,tλ−1
1

ξ2,tλ−1
= |∆(t ) | .

�

A.2.2 Variance.

Proof of Lemma 4.14. Consider �rst the case where all edges of λ appear on the stream before
any edge of γ , i.e.,

t`1 < t`2 < t`3 < tд1 < tд2 < tд3 .

�e presence or absence of either or both `1 and `2 in S at the beginning of time step t`3 (i.e.,
whether Dλ happens or not) has no e�ect whatsoever on the probability that д1 and д2 are in the
sample S at the beginning of time step tд3 . Hence in this case,

Pr(Dγ | Dλ) = Pr(Dγ ) .

Consider now the case where, for any i ∈ {1, 2}, the edges д1, . . . ,дi appear on the stream before
`3 does. De�ne now the events

• Ai : “the edges д1, . . . ,дi are in the sample S at the beginning of time step t`3 .”
• Bi : if i = 1, this is the event “the edge д2 is inserted in the sample S during time step tд2 .” If
i = 2, this event is the whole event space, i.e., the event that happens with probability 1.
• C: “neither д1 nor д2 were among the edges removed from S between the beginning of

time step t`3 and the beginning of time step tд3 .”
We can rewrite Dγ as

Dγ = Ai ∩ Bi ∩C .

Hence

Pr(Dγ | Dλ) = Pr (Ai ∩ Bi ∩C | Dλ)

= Pr (Ai | Dλ) Pr (Bi ∩C | Ai ∩ Dλ) . (21)

We now show that
Pr (Ai | Dλ) ≤ Pr (Ai ) .

If we assume that t`3 ≤ M + 1, then all the edges that appeared on the stream up until the beginning
of t`3 are in S. �erefore,

Pr (Ai | Dλ) = Pr(Ai ) = 1 .
Assume instead that t`3 > M + 1. Among the

(t`3−1
M

)
subsets of E(t`3−1) of size M , there are

(t`3−3
M−2

)
that contain `1 and `2. From Lemma A.1, we have that at the beginning of time t`3 , S is a subset of
size M of E(t`3−1) chosen uniformly at random. Hence, if we condition on the fact that {`1, `2} ⊂ S,
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we have that S is chosen uniformly at random from the
(t`3−3
M−2

)
subsets of E(t`3−1) of size M that

contain `1 and `2. Among these, there are
(t`3−3−i
M−2−i

)
that also contain д1, . . . ,дi . �erefore,

Pr(Ai | Dλ) =

(t`3−3−i
M−2−i

)(t`3−3
M−2

) = i−1∏
j=0

M − 2 − j
t`3 − 3 − j .

From Lemma 4.1 we have

Pr(Ai ) =
1

ξi,t`3−1
=

i−1∏
j=0

M − j

t`3 − 1 − j ,

where the last equality comes from the assumption t`3 > M + 1. From the same assumption and
from the fact that for any j ≥ 0 and any y ≥ x > j it holds x−j

y−j ≤
x
y , then we have

Pr(Ai | Dλ) ≤ Pr(Ai ) .

�is implies, from (21), that
Pr(Dγ | Dλ) ≤ Pr(Ai ) Pr(Bi ∩C | Ai ∩ Dλ) . (22)

Consider now the events Bi and C . When conditioned on Ai , these event are both independent

from Dλ : if the edges д1, . . . ,дi are in S at the beginning of time t`3 , the fact that the edges `1 and
`2 were also in S at the beginning of time t`3 has no in�uence whatsoever on the actions of the
algorithm (i.e., whether an edge is inserted in or removed from S). �us,

Pr(Ai ) Pr(Bi ∩C | Ai ∩ Dλ) = Pr(Ai ) Pr(Bi ∩C | Ai ) .

Pu�ing this together with (22), we obtain
Pr(Dγ | Dλ) ≤ Pr(Ai ) Pr(Bi ∩C | Ai ) ≤ Pr(Ai ∩ Bi ∩C) ≤ Pr(Dγ ) ,

where the last inequality follows from the fact that Dγ = Ai ∩ Bi ∩C by de�nition. �

A.3 Theoretical results for trièst-fd

A.3.1 Expectation. Before proving �m. 4.16 we need the following technical lemmas.
�e following is a corollary of [16, �m. 1].

Lemma A.4. For any t > 0, and any j , 0 ≤ j ≤ s(t ), let B(t ) be the collection of subsets of E(t ) of size
j. For any B ∈ B(t ) it holds

Pr
(
S = B | M (t ) = j

)
=

1(
|E (t ) |
j

) .
�at is, conditioned on its size at the end of time step t , S is equally likely to be, at the end of time step

t , any of the subsets of E(t ) of that size.

�e next lemma is an immediate corollary of [16, �m. 2].

Lemma A.5. Recall the de�nition of κ(t ) from (14). We have

κ(t ) = Pr(M (t ) ≥ 3) .

�e next lemma follows from Lemma A.4 in the same way as Lemma 4.1 follows from Lemma A.1.

Lemma A.6. For any time step t and any j, 0 ≤ j ≤ s(t ), let B be any subset of E(t ) of size
|B | = k ≤ s(t ). �en, at the end of time step t ,

Pr
(
B ⊆ S | M (t ) = j

)
=


0 if k > j
1

ψk, j,s (t )
otherwise

.
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�e next two lemmas discuss properties of trièst-fd for t < t∗, where t∗ is the �rst time that
|E(t ) | had size M + 1 (t∗ ≥ M + 1).

Lemma A.7. For all t < t∗, we have:

(1) d (t )o = 0; and
(2) S = E(t ); and
(3) M (t ) = s(t ).

Proof. Since the third point in the thesis follows immediately from the second, we focus on the
�rst two points.

�e proof is by induction on t . In the base base for t = 1: the element on the stream must be an
insertion, and the algorithm deterministically inserts the edge in S. Assume now that it is true for
all time steps up to (but excluding) some t ≤ t∗ − 1. We now show that it is also true for t .

Assume the element on the stream at time t is a deletion. �e corresponding edge must be in S,
from the inductive hypothesis. Hence trièst-fd removes it from S and increments the counter di
by 1. �us it is still true that S = E(t ) and d (t )o = 0, and the thesis holds.

Assume now that the element on the stream at time t is an insertion. From the inductive
hypothesis we have that the current value of the counter do is 0.

If the counter di has currently value 0 as well, then, because of the hypothesis that t < t∗, it must
be that |S| = M (t−1) = s(t−1) < M . �erefore trièst-fd always inserts the edge in S. �us it is still
true that S = E(t ) and d (t )o = 0, and the thesis holds.

If otherwise di > 0, then trièst-fd �ips a biased coin with probability of heads equal to

di
di + do

=
di
di
= 1,

therefore trièst-fd always inserts the edge in S and decrements di by one. �us it is still true that
S = E(t ) and d (t )o = 0, and the thesis holds. �

�e following result is an immediate consequence of Lemma A.5 and Lemma A.7.

Lemma A.8. For all t < t∗ such that s(t ) ≥ 3, we have κ(t ) = 1.

We can now prove �m. 4.16.

Proof of Thm. 4.16. Assume for now that t < t∗. From Lemma A.7, we have that s(t ) = M (t ). If
M (t ) < 3, then it must be s(t ) < 3, hence |∆(t ) | = 0 and indeed the algorithm returns ρ(t ) = 0 in this
case. If instead M (t ) = s(t ) ≥ 3, then we have

ρ(t ) =
τ (t )

κ(t )
.

From Lemma A.8 we have that κ(t ) = 1 for all t < t∗, hence ρ(t ) = τ (t ) in these cases. Since (an
identical version of) Lemma 4.3 also holds for trièst-fd, we have τ (t ) = |∆S | = |∆(t ) |, where the
last equality comes from the fact that S = E(t ) (Lemma A.7). Hence ρ(t ) = |∆(t ) | for any t ≤ t∗, as
in the thesis.

Assume now that t ≥ t∗. Using the law of total expectation, we can write

E
[
ρ(t )

]
=

min{s (t ),M }∑
j=0

E
[
ρ(t ) | M (t ) = j

]
Pr

(
M (t ) = j

)
. (23)
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Assume that |∆(t ) | > 0, otherwise, the algorithm deterministically returns 0 as an estimation and
the thesis follows. Let λ be a triangle in ∆(t ), and let δ (t )λ be a random variable that takes value

ψ3,M (t ),s (t )

κ(t )
=

s(t )(s(t ) − 2)(s(t ) − 2)
M (t )(M (t ) − 1)(M (t ) − 2)

1
κ(t )

if all edges of λ are in S at the end of the time instant t , and 0 otherwise. Since (an identical version
of) Lemma 4.3 also holds for trièst-fd, we can write

ρ(t ) =
∑
λ∈∆(t )

δ (t )λ .

�en, using Lemma A.5 and Lemma A.6, we have, for 3 ≤ j ≤ min{M, s(t )},

E
[
ρ(t ) | M (t ) = j

]
=

∑
λ∈∆(t )

ψ3, j,s (t )

κ(t )
Pr

(
δ (t )λ =

ψ3, j,s (t )

κ(t )
| M (t ) = j

)
= |∆(t ) |

ψ3, j,s (t )

κ(t )
1

ψ3, j,s (t )
=

1
κ(t )
|∆(t ) |, (24)

and
E

[
ρ(t ) | M (t ) = j

]
= 0, if 0 ≤ j ≤ 2. (25)

Plugging this into (23), and using Lemma A.5, we have

E
[
ρ(t )

]
= |∆(t ) |

1
κ(t )

min{s (t ),M }∑
j=3

Pr(M (t ) = j) = |∆(t ) | .

�

A.3.2 Variance. We now move to prove �m. 4.17 about the variance of the trièst-fd estimator.
We �rst need some technical lemmas.

Lemma A.9. For any time t ≥ t∗, and any j, 3 ≤ j ≤ min{s(t ),M}, we have:

Var
[
ρ(t ) |M (t ) = j

]
= (κ(t ))−2

(
|∆(t ) |

(
ψ3, j,s (t ) − 1

)
+ r (t )

(
ψ 2

3, j,s (t )ψ
−1
5, j,s (t ) − 1

)
+w (t )

(
ψ 2

3, j,s (t )ψ
−1
6, j,s (t ) − 1

))
(26)

An analogous result holds for any u ∈ V (t ), replacing the global quantities with the corresponding

local ones.

Proof. �e proof is analogous to that of �eorem 4.4, using j in place of M , s(t ) in place of
t , ψa, j,s (t ) in place of ξa,t , and using Lemma A.6 instead of Lemma 4.1. �e additional (k (t ))−2

multiplicative term comes from the (k (t ))−1 term used in the de�nition of ρ(t ). �

�e term w (t )
(
ψ 2

3, j,s (t )ψ
−1
6, j,s (t ) − 1

)
is non-positive.

Lemma A.10. For any time t ≥ t∗, and any j, 6 < j ≤ min{s(t ),M}, if s(t ) ≥ M we have:

Var
[
ρ(t ) |M (t ) = i

]
≤ (κ(t ))−2

(
|∆(t ) |

(
ψ3, j,s (t ) − 1

)
+ r (t )

(
ψ 2

3, j,s (t )ψ
−1
5, j,s (t ) − 1

))
, for i ≥ j

Var
[
ρ(t ) |M (t ) = i

]
≤ (κ(t ))−2

(
|∆(t ) |

(
ψ3,3,s (t ) − 1

)
+ r (t )

(
ψ 2

3,5,s (t )ψ
−1
5,5,s (t ) − 1

))
, for i < j

An analogous result holds for any u ∈ V (t ), replacing the global quantities with the corresponding

local ones.
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Proof. �e proof follows by observing that the term w (t )
(
ψ 2

3, j,s (t )ψ
−1
6, j,s (t ) − 1

)
is non-positive,

and that (26) is a non-increasing function of the sample size. �

�e following lemma deals with properties of the r.v. M (t ).

Lemma A.11. Let t > t∗, with s(t ) ≥ M . Let d (t ) = d (t )o + d
(t )
i denote the total number of unpaired

deletions at time t .19
�e sample sizeM (t ) follows the hypergeometric distribution:

20

Pr
(
M (t ) = j

)
=

{ (s (t )
j

) ( d (t )
M−j

) / (s (t )+d (t )
M

)
for max{M − d (t ), 0} ≤ j ≤ M

0 otherwise

. (27)

We have

E
[
M (t )

]
= M

s(t )

s(t ) + d (t )
, (28)

and for any 0 < c < 1

Pr
(
M (t ) > E

[
M (t )

]
− cM

)
≥ 1 − 1

e2c2M
. (29)

Proof. Since t > t∗, from the de�nition of t∗ we have that the M (t ) has reached size M at least
once (at t∗). From this and the de�nition of d (t ) (number of uncompensated deletion), we have
that M (t ) can not be less than M − d (t ). �e rest of the proof for (27) and for (28) follows from [16,
�m. 2].

�e concentration bound in (29) follows from the properties of the hypergeometric distribution
discussed by Skala [37]. �

�e following is an immediate corollary from Lemma A.11.

Corollary A.12. Consider the execution of trièst-fd at time t > t∗. Suppose we have d (t ) ≤ αs(t ),
with 0 ≤ α < 1 and s(t ) ≥ M . IfM ≥ 1

2
√
α ′−α

c ′ ln s(t ) for α < α ′ < 1, we have:

Pr
(
M (t ) ≥ M(1 − α ′)

)
> 1 − 1(

s(t )
)c ′ .

We can now prove �m. 4.17.

Proof of Thm. 4.17. From the law of total variance we have:

Var
[
ρ(t )

]
=

M∑
j=0

Var
[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j

)
+

M∑
j=0
E

[
ρ(t ) |M (t ) = j

]2
(1 − Pr

(
M (t ) = j

)
) Pr

(
M (t ) = j

)
− 2

M∑
j=1

j−1∑
i=0
E

[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j

)
E

[
ρ(t ) |M (t ) = i

]
Pr

(
M (t ) = i

)
.

19While both d (t )o and d (t )i are r.v.s, their sum is not.
20We use here the convention that

(0
0
)
= 1, and

(k
0
)
= 1.
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As shown in (24) and (25), for any j = 0, 1, . . . ,M we have E
[
ρ(t ) |M (t ) = j

]
≥ 0. �is in turn

implies:

Var
[
ρ(t )

]
≤

M∑
j=0

Var
[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j

)
+

M∑
j=0
E

[
ρ(t ) |M (t ) = j

]2
(1 − Pr

(
M (t ) = j

)
) Pr

(
M (t ) = j

)
. (30)

Let us consider separately the two main components of (30). From Lemma A.10 we have:
M∑
j=0

Var
[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j

)
= (31)

M∑
j≥M (1−α ′)

Var
[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j)

)
+

M (1−α ′)∑
j=0

Var
[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j

)
≤ (κ(t ))−2

(
|∆(t ) |

(
ψ3, j,s (t ) − 1

)
+ r (t )

(
ψ 2

3, j,s (t )ψ
−1
5, j,s (t ) − 1

))
× Pr

(
M (t ) > M(1 − α ′)

)
≤ (κ(t ))−2

(
|∆(t ) |

(
s(t )

)3

6 + r (t )
s(t )

6

)
Pr

(
M (t ) ≤ M(1 − α ′)

)
(32)

According to our hypothesis M ≥ 1
2
√
α ′−α

7 ln s(t ), thus we have, from Corollary A.12:

Pr
(
M (t ) ≤ M(1 − α ′))

)
≤

1
(s(t ))7

.

As r (t ) < |∆(t ) |2 and |∆(t ) | ≤ (s(t ))3 we have:

(κ(t ))−2

(
|∆(t ) |

(
s(t )

)3

6 + r (t )
s(t )

6

)
Pr

(
M (t ) ≤ M(1 − α ′)

)
≤ (κ(t ))−2

We can therefore rewrite (32) as:
M∑
j=0

Var
[
ρ(t ) |M (t ) = j

]
Pr

(
M (t ) = j

)
≤ (κ(t ))−2

(
|∆(t ) |

(
ψ3,M (1−α ′),s (t ) − 1

))
+ (κ(t ))−2

(
r (t )

(
ψ 2

3,M (1−α ′),s (t )ψ
−1
5,M (1−α ′),s (t ) − 1

)
+ 1

)
. (33)

Let us now consider the term
∑M

j=0 E
[
ρ(t ) |M (t ) = j

]2
(1− Pr

(
M (t ) = j

)
) Pr

(
M (t ) = j

)
. Recall that,

from (24) and (25), we haveE
[
ρ(t ) |M (t ) = j

]
= |∆(t ) |(κ(t ))−1 for j = 3, . . . ,M , andE

[
ρ(t ) |M (t ) = j

]
=

0 for j = 0, 1, 2. From Corollary A.12 we have that for j ≤ (1 − α ′)M and M ≥ 1
2
√
α ′−α

7 ln s(t )

Pr
(
M (t ) = j

)
≤ Pr

(
M (t ) ≤ (1 − α ′)M

)
≤

1(
s(t )

)7 ,

and thus:
(1−α ′)M∑

j=0
E

[
ρ(t ) |M (t ) = j

]2
(1 − Pr

(
M (t ) = j

)
) Pr

(
M (t ) = j

)
≤
(1 − α ′)M |∆(t ) |2(κ(t ))−2(

s(t )
)7

≤ (1 − α ′)(κ(t ))−2, (34)
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where the last passage follows since, by hypothesis, M ≤ s(t ).
Let us now consider the values j > (1 − α ′)M , we have:

M∑
j>(1−α ′)M

E
[
ρ(t ) |M (t ) = j

]2
(1 − Pr

(
M (t ) = j

)
) Pr

(
M (t ) = j

)
≤ α ′M |∆(t ) |2(κ(t ))−2 ©«1 −

M∑
j>(1−α ′)M

Pr
(
M (t ) = j

)ª®¬
≤ α ′M |∆(t ) |2(κ(t ))−2

(
1 − Pr

(
M (t ) > (1 − α ′)M

))
≤
α ′M |∆(t ) |2(κ(t ))−2(

s(t )
)7

≤ α ′(κ(t ))−2, (35)

where the last passage follows since, by hypothesis, M ≤ s(t ).
�e theorem follows from composing the upper bounds obtained in (33), (34) and (35) according

to (30). �

A.3.3 Concentration. We now prove �m. 4.18 about trièst-fd.

Proof of Thm. 4.18. By Chebyshev’s inequality it is su�cient to prove that

Var[ρ(t )]
ε2 |∆(t ) |2

< δ .

From Lemma 4.17, for M ≥ 1√
a′−α

7 ln s(t ) we have:

Var
[
ρ(t )

]
≤ (κ(t ))−2 |∆(t ) |

(
ψ3,M (1−α ′),s (t ) − 1

)
+ (κ(t ))−2r (t )

(
ψ 2

3,M (1−α ′),s (t )ψ
−1
5,M (1−α ′),s (t ) − 1

)
+ (κ(t ))−22

Let M ′ = (1 − α ′)M . In order to verify that the lemma holds, it is su�cient to impose the following
two conditions:

Condition (1)

δ

2 >
(κ(t ))−2

(
|∆(t ) |

(
ψ3,M (1−α ′),s (t ) − 1

)
+ 2

)
ε2 |∆(t ) |2

.

As by hypothesis |∆(t ) | > 0, we can rewrite this condition as:

δ

2 >
(κ(t ))−2

(
ψ3,M (1−α ′),s (t ) − (

|∆(t ) |−2
|∆(t ) |

)
ε2 |∆(t ) |
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which is veri�ed for:

M ′(M ′ − 1)(M ′ − 2) > 2s(t )(s(t ) − 1)(s(t ) − 2)
δε2 |∆(t ) |(κ(t ))2 + 2 |∆

(t ) |−2
|∆(t ) |

,

M ′ > 3

√√√ 2s(t )(s(t ) − 1)(s(t ) − 2)
δε2 |∆(t ) |(κ(t ))2 + 2 |∆

(t ) |−2
|∆(t ) |

+ 2,

M > (1 − α ′)−1 ©« 3

√√√ 2s(t )(s(t ) − 1)(s(t ) − 2)
δε2 |∆(t ) |(κ(t ))2 + 2 |∆

(t ) |−2
|∆(t ) |

+ 2
ª®®¬ .

Condition (2)

δ

2 >
(κ(t ))−2

ε2 |∆(t ) |2
r (t )

(
ψ 2

3,M (1−α ′),s (t )ψ
−1
5,M (1−α ′),s (t ) − 1

)
. (36)

As we have:

(κ(t ))−2r (t )
(
ψ 2

3,M (1−α ′),s (t )ψ
−1
5,M (1−α ′),s (t ) − 1

)
≤ (κ(t ))−2r (t )

(
s(t )

6M(1 − α ′) − 1
)

�e condition (36) is veri�ed for:

M >
(1 − α ′)−1

3

(
r (t )s(t )

δε2 |∆(t ) |2(κ(t ))−2 + 2r (t )

)
.

�e theorem follows. �
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