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ABSTRACT
You put a program on a concurrent server, but you don’t trust
the server; later, you get a trace of the actual requests that
the server received from its clients and the responses that
it delivered. You separately get logs from the server; these
are untrusted. How can you use the logs to efficiently verify
that the responses were derived from running the program
on the requests? This is the Efficient Server Audit Problem,
which abstracts real-world scenarios, including running a
web application on an untrusted provider. We give a solution
based on several new techniques, including simultaneous
replay and efficient verification of concurrent executions. We
implement the solution for PHP web applications. For several
applications, our verifier achieves 5.6–10.9× speedup versus
simply re-executing, with <10% overhead for the server.

1 MOTIVATION AND CONTENTS
Dana the Deployer works for a company whose employees
use an open-source web application built from PHP and a SQL
database. The application is critical: it is a project manage-
ment tool (such as JIRA), a wiki, or a forum. For convenience
and performance, Dana wants to run the application on a
cloud platform, say AWS [1]. However, Dana has no visibil-
ity into AWS. Meanwhile, undetected corrupt execution—as
could happen from misconfiguration, errors, compromise, or
adversarial control at any layer of the execution stack: the
language run-time, the HTTP server, the OS, the hypervisor,
the hardware—would be catastrophic for Dana’s company. So
Dana would like assurance that AWS is executing the actual
application as written. How can Dana gain this assurance?

Dana’s situation is one example of a fundamental problem,
which this paper defines and studies: the Efficient Server Audit
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Problem. The general shape of this problem is as follows. A
principal supplies a program to an untrusted executor that is
supposed to perform repeated and possibly concurrent execu-
tions of the program, on different inputs. The principal later
wants to verify that the outputs delivered by the executor were
produced by running the program. The verification algorithm,
or verifier, is given an accurate trace of the executor’s inputs
and delivered outputs. In addition, the executor gives the veri-
fier reports, but these are untrusted and possibly spurious. The
verifier must somehow use the reports to determine whether
the outputs in the trace are consistent with having actually
executed the program. Furthermore, the verifier must make
this determination efficiently; it should take less work than
re-executing the program on every input in the trace.

The requirement of a trace is fundamental: if we are audit-
ing a server’s outputs, then we need to know those outputs.
Of course, getting a trace may not be feasible in all cases.
In Dana’s case, the company can place a middlebox at the
network border, to capture end-clients’ traffic to and from the
application. We discuss other scenarios later (§4.1, §7).

We emphasize that the Efficient Server Audit Problem is
separate from—but complementary to—program verification,
which is concerned with developing bug-free programs. Our
concern instead is whether a given program is actually exe-
cuted as written. Neither guarantee subsumes the other.

The high-level consideration here is execution integrity,
a topic that has been well-studied in several academic com-
munities, with diverse solutions (§6.1). The novelty in our
variant is in combining three characteristics: (1) we make no
assumptions about the failure modes of the executor, (2) we
allow the executor to be concurrent, and (3) we insist on solu-
tions that scale beyond toy programs and are compatible with
(at least some) legacy programs.

The contributions and work of this paper are as follows.

§2 Definition of the Efficient Server Audit Problem. We
first present the problem in theoretical terms. We do this
to show the generality and the fundamental challenges.

§3 An abstract solution: SSCO. We exhibit a solution at
a theoretical level, so as to highlight the core concepts,
techniques, and algorithms. These include:

§3.1 SIMD [5]-on-demand. The verifier re-executes all
requests, in an accelerated way. For a group of re-
quests with the same control flow, the verifier executes
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a “superposition”: instructions with identical operands
across requests are performed once, whereas instruc-
tions with different operands are executed individually
and merged into the superposed execution. This solu-
tion assumes that the workload has repeated traversal
of similar code paths—which is at least the case for
some web applications, as observed by Poirot [52, §5].

§3.3 Simulate-and-check. How can the verifier re-execute
reads of persistent or shared state? Because it re-executes
requests out of order, it cannot physically re-invoke op-
erations on such state, but neither can it trust reports
that are allegedly the originally read values (§3.2). In-
stead, the executor (purportedly) logs each operation’s
operands; during re-execution, the verifier simulates
reads, using the writes in the logs, and checks the
logged writes opportunistically.

§3.5 Consistent ordering. The verifier must ensure that
operations can be consistently ordered (§3.4). To this
end, the verifier builds a directed graph with a node
for every external observation or alleged operation, and
checks whether the graph is acyclic. This step incorpo-
rates an efficient algorithm for converting a trace into a
time precedence graph. This algorithm would acceler-
ate prior work [13, 50] and may be useful elsewhere.

SSCO has other aspects besides, and the unified whole was
difficult to get right (§7): our prior attempts had errors that
came to light when we tried to prove correctness. This
version, however, is proved correct [81, Appx. A].

§4 A built system: OROCHI. We describe a system that im-
plements SSCO for PHP web applications. This is for the
purpose of illustration, as we expect the system to general-
ize to other web languages, and the theoretical techniques
in SSCO to apply in other contexts (§7). OROCHI includes
a record-replay system [33, 34] for PHP [26, 52]. The
replayer is a modified language runtime that implements
SIMD-on-demand execution using multivalue types that
hold the program state for multiple re-executions. OROCHI
also introduces mechanisms, based on a versioned data-
base [26, 40, 61, 80], to adapt simulate-and-check to
databases and to deduplicate database queries.

§5 Experimental evaluation of OROCHI. In experiments
with several applications, the verifier can audit 5.6–10.9×
faster than simple re-execution; this is a loose lower
bound, as the baseline is very pessimistic for OROCHI (§5.1).
OROCHI imposes overhead of roughly 10% on the web
server. OROCHI’s reports, per-request, are 3%–11% of
the size of a request-response pair. Most significantly, the
verifier must keep a copy of the server’s persistent state.

The main limitations (§5.5) are that, first, in SSCO the ex-
ecutor has discretion over scheduling concurrent requests,
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Figure 1: The Efficient Server Audit Problem. The objects ab-
stract shared state (databases, key-value stores, memory, etc.).
The technical problem is to design the verifier and the reports
to enable the verifier, given a trace and a program, to efficiently
validate (or invalidate) the contents of responses.

and it gets additional discretion, in OROCHI, over the return
values of non-deterministic PHP built-ins. Second, OROCHI
is restricted to applications that do not interact much with
other applications; nevertheless, there are suitable application
classes, for example LAMP [3]. Third, OROCHI requires mi-
nor modifications in some applications, owing to the SSCO
model. Finally, the principal can audit an application only
after activating OROCHI; if the server was previously running,
the verifier has to bootstrap from the pre-OROCHI state.

2 PROBLEM DEFINITION
This section defines the Efficient Server Audit Problem. The
actors and components are depicted in Figure 1.

A principal chooses or develops a program, and deploys
that program on a powerful but untrusted executor.

Clients (the outside world) issue requests (inputs) to the
executor, and receive responses (outputs). A response is sup-
posed to be the output of the program, when the correspond-
ing request is the input. But the executor is untrusted, so the
response could be anything.

A collector captures an ordered list, or trace, of requests
and responses. We assume that the collector does its job
accurately, meaning that the trace exactly records the requests
and the (possibly wrong) responses that actually flow into and
out of the executor.

The executor maintains reports whose purpose is to assist
an audit; like the responses, the reports are untrusted.

Periodically, the principal conducts an audit; we often refer
to the audit procedure as a verifier. The verifier gets a trace
(from the accurate collector) and reports (from the untrusted
executor). The verifier needs to determine whether executing
the program on each input in the trace truly produces the
respective output in the trace.

Two features of our setting makes this determination chal-
lenging. First, the verifier is much weaker than the executor,
so it cannot simply re-execute all of the requests.
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The second challenge arises from concurrency: the executor
is permitted to handle multiple requests at the same time (for
example, by assigning each to a separate thread), and the in-
voked program is permitted to issue operations to objects. An
object abstracts state shared among executions, for example
a database, key-value store, or memory cells (if shared). We
will be more precise about the concurrency model later (§3.2).
For now, a key point is that, given a trace—in particular, given
the ordering of requests and responses in the trace, and given
the contents of requests—the number of valid possibilities for
the contents of responses could be immense. This is because
an executor’s responses depend on the contents of shared
objects; as usual in concurrent systems, those contents de-
pend on the operation order, which depends on the executor’s
internal scheduling choices.

Somehow, the reports, though unreliable, will have to help
the verifier efficiently tell the difference between valid and
invalid traces. In detail, the problem is to design the verifier
and the reports to meet these properties:

• Completeness. If the executor behaved during the time
period of the trace, meaning that it executed the given
program under the appropriate concurrency model, then
the verifier must accept the given trace.
• Soundness. The verifier must reject if the executor misbe-

haved during the time period of the trace. Specifically, the
verifier accepts only if there is some schedule S, meaning an
interleaving or context-switching among (possibly concur-
rent) executions, such that: (a) executing the given program
against the inputs in the trace, while following S, repro-
duces exactly the respective outputs in the trace, and (b) S
is consistent with the ordering in the trace. (Appx. A [81]
states Soundness precisely.) This property means that the
executor can pass the audit only by executing the program
on the received requests—or by doing something externally
indistinguishable from that.
• Efficiency. The verifier must require only a small fraction

of the computational resources that would be required to re-
execute each request. Additionally, the executor’s overhead
must be only a small fraction of its usual costs to serve
requests (that is, without capturing reports). Finally, the
solution has to work for applications of reasonable scale.

We acknowledge that “small fraction” and “reasonable
scale” may seem out of place in a theoretical description. But
these characterizations are intended to capture something es-
sential about the class of admissible solutions. As an example,
there is a rich theory that studies execution integrity (§6.1),
but the solutions (besides not handling concurrency) are so far
from scaling to the kinds of servers that run real applications
that we must look for something qualitatively different.

3 A SOLUTION: SSCO
This section describes an abstract solution to the Efficient
Server Audit Problem, called SSCO (a rough abbreviation of
the key techniques). SSCO assumes that there is similarity
among the executions, in particular that there are a relatively
small number of control flow paths induced by requests (§3.1).
SSCO also assumes a certain concurrency model (§3.2).

Overview and key techniques. In SSCO, the reports are:

• Control flow groupings: For each request, the executor
records an opaque tag that purportedly identifies the control
flow of the execution; requests that induce the same control
flow are supposed to receive the same tag.
• Operation logs: For each shared object, the executor main-

tains an ordered log of all operations (across all requests).
• Operation counts: For each request execution, the executor

records the total number of object operations that it issued.

The verifier begins the audit by checking that the trace is
balanced: every response must be associated with an earlier
request, and every request must have a single response or
some information that explains why there is none (a network
reset by a client, for example). Also, the verifier checks that
every request-response pair has a unique requestID; a well-
behaved executor ensures this by labeling responses. If these
checks pass, we (and the verifier) can refer to request-response
pairs by requestID, without ambiguity.

The core of verification is as follows. The verifier re-executes
each control flow group in a batch; this happens via SIMD [5]-
on-demand execution (§3.1). During this process, re-executed
object operations don’t happen directly—they can’t, as re-
execution follows a different order from the original (§3.2).
Instead, the operation logs contain a record of reads and
writes, and re-execution follows a discipline that we call
simulate-and-check (§3.3): re-executed read operations are
fed (or simulated) based on the most recent write entry in the
logs, and the verifier checks logged write operations oppor-
tunistically. In our context, simulate-and-check makes sense
only if alleged operations can be ordered consistent with ob-
served requests and responses (§3.4); the verifier determines
whether this is so using a technique that we call consistent
ordering verification (§3.5).

At the end, the verifier compares each request’s produced
output to the request’s output in the trace, and accepts if and
only if all of them match, across all control flow groups.

The full audit logic is described in Figures 3, 5, and 6, and
proved correct in our extended version [81, Appx. A].

3.1 SIMD-on-demand execution
We assume here that requests do not interact with shared
objects; we remove that assumption in Section 3.2. (As we
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Figure 2: Abstract depiction of SIMD-on-demand, for a simple
computation. Rectangles represent program variables, circles
represent instructions. On the right, thick lines represent explic-
itly materialized outputs; thin lines represent collapsed outputs.

have just done, we will sometimes use “request” as shorthand
for “the execution of the program when that request is input.”)

The idea in SIMD-on-demand execution is that, for each
control flow group, the verifier conducts a single “superposed”
execution that logically executes all requests in that group
together, at the same time. Instructions whose operands are
different across the separate logical executions are performed
separately (we call this multivalent execution of an instruc-
tion), whereas an instruction executes only once (univalently)
if its operands are identical across the executions. The concept
is depicted in Figure 2.

The control flow groupings are structured as a map C from
opaque tag to set-of-requestIDs. Of course, the map is part of
the untrusted report, so the verifier does not trust it. However,
if the map is incorrect (meaning, two requests in the same
control flow group diverge under re-execution), then the veri-
fier rejects. Furthermore, if the map is incomplete (meaning,
not including particular requestIDs), then the re-generated
responses will not match the outputs in the trace. The verifier
can filter out duplicates, but it does not have to do so, since
re-execution is idempotent (even with shared objects, below).

Observe that this approach meets the verifier’s efficiency
requirement (§2), if (1) the number of control paths taken
is much smaller than the number of requests in the audit,
(2) most instructions in a control flow group execute univa-
lently, and (3) it is inexpensive to switch between multivalent
and univalent execution, and to decide which to perform. (We
say “if” and not “only if” because there may be platforms
where, for example, condition (1) alone is sufficient.)

System preview. The first two conditions hold in the setting
for our built system, OROCHI (§4): LAMP web applications.

Condition (1) holds because these applications are in a sense
routine (they do similar things for different users) and because
the programming language is high-level (for example, string
operations or calls like sort() or max() induce the same control
flow [52]). Condition (2) holds because the logical outputs
have a lot of overlap: different users wind up seeing similar-
looking web pages, which implies that the computations that
produce these web pages include identical data flows. This
commonality was previously observed by Poirot [52], and
our experiments confirm it (§5.2). Condition (3) is achieved,
in OROCHI, by augmenting the language run-time with mul-
tivalue versions of basic datatypes, which encapsulate the
different values of a given operand in the separate executions.
Re-execution moves dynamically between a vector, or SIMD,
mode (which operates on multivalues) and a scalar mode
(which operates on normal program variables).

3.2 Confronting concurrency and shared objects
As noted earlier, a key question is: how does the verifier re-
execute an operation that reads from a shared object? An
approach taken elsewhere [26, 52] is to record the values that
had been read by each request, and then to supply those values
during re-execution. One might guess that, were we to apply
this approach to our context where reports are untrusted, the
worst thing that could happen is that the verifier would fail to
reproduce the observed outputs in the trace—in other words,
the executor would be incriminating itself. But the problem is
much worse than that: the reported values and the responses
could both be bogus. As a result, if the verifier’s re-execution
dutifully incorporated the purported read values, it could end
up reproducing, and thereby validating, a spurious response
from a misbehaved executor; this violates Soundness (§2).

Presentation plan. Below, we define the concurrency model
and object semantics, as necessary context. We then cover the
core object-handling mechanisms (§3.3–§3.5). However, that
description will be incomplete, in two ways. First, we will not
cover every check or justify each line of the algorithms. Sec-
ond, although we will show with reference to examples why
certain alternatives fail, that will be intuition and motivation,
only; correctness, meaning Completeness and Soundness (§2),
is actually established end-to-end, with a chain of logic that
does not enumerate or reason about all the ways in which
reports and responses could be invalid [81, Appx. A].

Concurrency model and object semantics. In a well-behaved
executor, each request induces the creation of a separate
thread that is destroyed after the corresponding response
is delivered. A thread runs concurrently with the threads of
any other requests whose responses have not yet been deliv-
ered. Each thread sequentially performs instructions against
an isolated execution context: registers and local memory.

549



Input Trace Tr Input Reports R Global OpMap : (requestID, opnum) → (i, seqnum)

Components of the reports R:
C : CtlFlowTag→ Set(requestIDs) // purported groups; §3.1
OLi : N+ → (requestID, opnum, optype, opcontents) // purported op logs; §3.3
M : requestID→ N // purported op counts; §3.3

1: procedure SSCO_AUDIT()
2: // Partially validate reports (§3.5) and construct OpMap
3: ProcessOpReports() // defined in Figure 5
4:
5: return ReExec() // line 24
6:
7: procedure CHECKOP(rid, opnum, i, optype, opcontents)
8: if (rid, opnum) not in OpMap: REJECT

9:
10: î, s← OpMap[rid, opnum]
11: ôt, ôc← (OLi[s].optype, OLi[s].opcontents)
12: if i , î or optype , ôt or opcontents , ôc:
13: REJECT
14: return s
15:
16: procedure SIMOP(i, s, optype, opcontents)
17: ret← ⊥
18: writeop← walk backward in OLi from s; stop when
19: optype=RegisterWrite
20: if writeop doesn’t exist:
21: REJECT
22: ret = writeop.opcontents
23: return ret

24: procedure REEXEC()
25: Re-execute Tr in groups according to C:
26:
27: (1) Initialize a group as follows:
28: Read in inputs for all requests in the group
29: Allocate program structures for each request in the group
30: opnum← 1 // opnum is a per-group running counter
31:
32: (2) During SIMD-on-demand execution (§3.1):
33:
34: if execution within the group diverges: return REJECT
35:
36: When the group makes a state operation:
37: optype← the type of state operation
38: for all rid in the group:
39: i, oc← state op parameters from execution
40: s← CheckOp(rid, opnum, i, optype, oc) // line 7
41: if optype = RegisterRead:
42: state op result← SimOp(i, s, optype, oc) // line 16
43: opnum← opnum + 1
44:
45: (3) When a request rid finishes:
46: if opnum < M(rid): return REJECT
47:
48: (4) Write out the produced outputs
49:
50: if the produced outputs from (4) are exactly the responses in Tr:
51: return ACCEPT
52: return REJECT

Figure 3: The SSCO audit procedure. The supplied trace Tr must be balanced (§3), which the verifier ensures before invoking
SSCO_AUDIT. A rigorous proof of correctness is in the extended version of this paper [81, Appx. A].

As stated earlier, threads perform operations on shared ob-
jects (§2). These operations are blocking, and the objects
expose atomic semantics. We assume for simplicity in this
section that objects expose a read-write interface; they are
thus atomic registers [54]. Later, we will permit more complex
interfaces, such as SQL transactions (§4.4).

3.3 Simulate-and-check
The reports in SSCO include the (alleged) operations them-
selves, in terms of their operands. Below, we describe the
format and how the verifier uses these operation logs.

Operation log contents. Each shared object is labeled with
an index i. The operation log for object i is denoted OLi, and
it has the following form (N+ denotes the set {1, 2, . . .}):

OLi : N+ → (requestID, opnum, optype, opcontents).

The opnum is per-requestID; a correct executor tracks and
increments it as requestID executes. An operation is thus
identified with a unique (rid, opnum) pair. The optype and
opcontents depend on the object type. For registers, optype
can be RegisterRead (and opcontents are supposed to be
empty) or RegisterWrite (and opcontents is the value to write).

What the verifier does. The core re-execution logic is con-
tained in ReExec (Figure 3, line 24). The verifier feeds re-
executed reads by identifying the latest write before that
read in the log. Of course, the logs might be spurious, so for
write operations, the verifier opportunistically checks that the
operands (produced by re-execution) match the log entries.

In more detail, when re-executing an operation (rid, opnum),
the verifier uses OpMap (as defined in Fig. 3) to identify the
log entry; it then checks that the parameters (generated by pro-
gram logic) match the logs. Specifically, the verifier checks
that the targeted object corresponds to the (unique) log that
holds (rid, opnum) (uniqueness is ensured by checks in Fig-
ure 5), and that the produced operands (such as the value to
be written) are the same as in the given log entry (lines 37–40,
Figure 3). If the re-executed operation is a read, the verifier
feeds it by identifying the write that precedes (rid, opnum);
this is done in SimOp.

Notice that an operation that reads a given write might
re-execute long before the write is validated. The intuition
here is that a read’s validity is contingent on the validity of
all prior write operations in the log. Meanwhile, the audit
procedure succeeds only if all checks—including the ones of
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f(){
  …………………………
  …………………………
  write(A,1)
  …………………………
  …………………………

  read(B) ! x
  …………………………
  output(x)
}

g(){
  …………………………
  write(B,1)
  …………………………
  …………………………

  read(A) ! y
  …………………………
  …………………………
  …………………………
  output(y)
}
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OLA
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r2

read

 

…

OLB
r2

write 1
r1

read

 

…

r2
a

b

c

r1 req
r1: 1
r2 req

r2: 0

executor

r1 req

r1: 0
r2 req

r2: 0

executor

r1 req

r1: 1
r2 req

r2: 1

executor
Figure 4: Three examples to highlight the verifier’s challenge and to motivate consistent ordering verification (§3.5). As explained in
the text, a correct verifier (meaning Complete and Sound; §2) must reject examples a and b, and accept c. In these examples, r1 and r2
are requestIDs in different control flow groups, and their executions invoke different subroutines of the given program. For simplicity,
there is only one request per control flow group, and objects are assumed to be initialized to 0. What varies among examples are the
timing of requests and responses, the contents of the executor’s responses, and the alleged operation logs for objects A and B (denoted
OLA, OLB). The opnum component of the log entries is not depicted.

write operations—succeed, thereby retroactively discharging
the assumption underlying every read.

What prevents the executor from justifying a spurious re-
sponse by inserting into the logs additional operations? Vari-
ous checks in the algorithm would detect this and other cases.
For example, the op count reports M enforce certain invariants,
and interlocking checks in the algorithms validate M.

3.4 Simulate-and-check is not enough
To show why simulate-and-check is insufficient by itself, and
to illustrate the challenge of augmenting it, this section walks
through several simple examples. This will give intuition for
the techniques in the next section (§3.5).

The examples are depicted in Figure 4 and denoted a, b,
c. Each of them involves two requests, r1 and r2. Each ex-
ample consists of a particular trace—or, equivalently, a par-
ticular request-response pattern—and particular reports. As
a shorthand, we notate the delivered responses with a pair
(r1resp, r2resp); for example, the responses in a are (1, 0).

A correct verifier must reject a, reject b, and accept c.
To see why, note that in a, the executor delivers a response

to r1 before r2 arrives. So the executor must have executed
r1 and then executed r2. Under that schedule, there is no way
to produce the observed output (1, 0); in fact, the only output
consistent with the observed events is (0, 1). Thus, accepting
a would violate Soundness (§2).

In b, r1 and r2 are concurrent. A well-behaved executor
can deliver any of (0, 1), (1, 0), or (1, 1), depending on the
schedule that it chooses. Yet, the executor delivered (0, 0),

which is consistent with no schedule. So accepting b would
also violate Soundness.

In c, r1 and r2 are again concurrent. This time, the executor
delivered (1, 1), which a well-behaved executor can produce,
by executing the two writes before either read. Therefore,
rejecting c would violate Completeness (§2).

Now, if the verifier used only simulate-and-check (Fig-
ure 3), the verifier would accept in all three of the examples.
We encourage curious readers to convince themselves of this
behavior by inspecting the verifier’s logic and the examples.
Something to note is that in a and b, the operation logs and
responses are both spurious, but they are arranged to be con-
sistent with each other.

Below are some strawman attempts to augment simulate-
and-check, by analyzing all operation logs prior to re-execution.

• What if the verifier (i) creates a global order O of requests
that is consistent with the real-time order (in a, r1 would be
prior to r2 in O; in b and c, either order is acceptable), and
(ii) for each log, checks that the order of its operations is
consistent with O? This would rightly reject a (r1 is before
r2 in O but not in the logs), rightly reject b (regardless of
the choice of O, one of the two logs will violate it), and
wrongly reject c (for the same reason it would reject b).
This approach would be tantamount to insisting that entire
requests execute atomically (or transactionally)—which is
contrary to the concurrency model.
• What if the verifier creates only a partial order O′ on re-

quests that is consistent with the real-time order, and then
insists that, for each log, the order of operations is consis-
tent with O′? That is, operations from concurrent requests
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can interleave in the logs. This would rightly reject a and
rightly accept c. But it would wrongly accept b.
• Now notice that the operations in b cannot be ordered: con-

sidering log and program order, the operations form a cycle,
depicted in Figure 4. So what if the verifier (a) creates a
directed graph whose nodes are all operations in the log
and whose edges are given by log order and program order,
and (b) checks that there are no cycles? That would rightly
reject b and accept c. But it would wrongly accept a.

The verifier’s remaining techniques, described next, can be
understood as combining the preceding failed attempts.

3.5 Consistent ordering verification
At a high level, the verifier ensures the existence of an implied
schedule that is consistent with external observations and
alleged operations. Prior to re-executing, the verifier builds
a directed graph G with a node for every event (an observed
request or response, or an alleged operation); edges represent
precedence [54]. The verifier checks whether G is acyclic. If
so, then all events can be consistently ordered, and the implied
schedule is exactly the ordering implied by G’s edges. Note,
however, that the verifier does not follow that order when
re-executing nor does the verifier consult G again.

Figures 5 and 6 depict the algorithms. G contains nodes
labeled (rid, opnum), one for each alleged operation in the
logs. G also contains, for each request rid in the trace, nodes
(rid, 0) and (rid,∞), representing the arrival of the request
and the departure of the response, respectively. The edges in
G capture program order via AddProgramEdges and alleged
operation order via AddStateEdges.

Capturing time precedence. To be consistent with external
observations, G must also capture time precedence. (This is
what was missing in the final attempt in §3.4.) We say that r1
precedes r2 (notated r1 <Tr r2) if the trace Tr shows that r1
departed from the system before r2 arrived [54]. If r1 <Tr r2,
then the operations issued by r1 must occur in the implied
schedule prior to those issued by r2.

Therefore, the verifier needs to construct edges that capture
the <Tr partial order, in the sense that r1 <Tr r2 ⇐⇒ G has
a directed path from (r1,∞) to (r2, 0). How can the verifier
construct these edges from the trace? Prior work [13] gives
an offline algorithm for this problem that runs in time O(X ·
log X + Z), where X is the number of requests, and Z is the
minimum number of time-precedence edges needed (perhaps
counter-intuitively, more concurrency leads to higher Z).

By contrast, our solution runs in time O(X + Z) [81, §A.8],
and works in streaming fashion. The key algorithm is Create-
TimePrecedenceGraph, given in Figure 6 and proved correct
in our extended version [81, Lemma 2]. The algorithm tracks
a “frontier”: the set of latest, mutually concurrent requests.

1: Global Trace Tr, Reports R, Graph G, OpMap OpMap
2: procedure PROCESSOPREPORTS()
3:
4: GTr ← CreateTimePrecedenceGraph() // defined in Figure 6
5: SplitNodes(GTr)
6: AddProgramEdges()
7:
8: CheckLogs() // also builds the OpMap
9: AddStateEdges()

10:
11: if CycleDetect(G): // standard algorithm; see [31, Ch. 22]
12: REJECT
13:
14: procedure SPLITNODES(Graph GTr)
15: G.Nodes← {}, G.Edges← {}
16: for each node rid ∈ GTr.Nodes:
17: G.Nodes += { (rid, 0), (rid,∞) }

18: for each edge ⟨rid1, rid2⟩ ∈ GTr.Edges:
19: G.Edges += ⟨(rid1,∞), (rid2, 0)⟩
20:
21: procedure ADDPROGRAMEDGES()
22: for all rid that appear in the events in Tr:
23: for opnum = 1, . . . , R.M(rid):
24: G.Nodes += (rid, opnum)
25: G.Edges += ⟨(rid, opnum − 1), (rid, opnum)⟩

26: G.Edges += ⟨(rid, R.M(rid)), (rid,∞)⟩

27:
28: procedure CHECKLOGS()
29: for log = R.OL1, . . . , R.OLn:
30: for j = 1, . . . , length(log):
31: if log[j].rid does not appear in Tr or
32: log[j].opnum ≤ 0 or
33: log[j].opnum > R.M(log[j].rid) or
34: (log[j].rid, log[j].opnum) is in OpMap:
35: REJECT
36:
37: let curr_op = (log[j].rid, log[j].opnum)
38: OpMap[curr_op]← (i, j) // i is the index such that log = R.OLi

39:
40: for all rid that appear in the events in Tr:
41: for opnum = 1, . . . , R.M(rid):
42: if (rid, opnum) is not in OpMap: REJECT

43:
44: procedure ADDSTATEEDGES()
45: // Add edge to G if adjacent log entries are from different
46: // requests. If they are from the same request, check that the
47: // intra-request opnum increases
48: for log = R.OL1, . . . , R.OLn:
49: for j = 2, . . . , length(log):
50: let curr_r, curr_op, prev_r, prev_op =
51: (log[j].rid, log[j].opnum, log[j−1].rid, log[j−1].opnum)
52: if prev_r , curr_r:
53: G.Edges += ⟨(prev_r, prev_op), (curr_r, curr_op)⟩
54: else if prev_op > curr_op: REJECT

Figure 5: ProcessOpReports ensures that events (request ar-
rival, departure of response, and operations) can be consistently
ordered. It does this by constructing a graph G—the nodes are
events; the edges reflect request precedence in Tr, program or-
der, and the operation logs—and ensuring that G has no cycles.
OpMap is constructed here as an index of the operation logs.
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1: procedure CREATETIMEPRECEDENCEGRAPH()
2: // “Latest” requests; “parent(s)” of any new request
3: Frontier← {}
4: GTr.Nodes← {}, GTr.Edges← {}
5:
6: for each input and output event in Tr, in time order:
7: if the event is REQUEST(rid):
8: GTr.Nodes += rid
9: for each r in Frontier:

10: GTr.Edges += ⟨r, rid⟩
11: if the event is RESPONSE(rid):
12: // rid enters Frontier, evicting its parents
13: Frontier −= { r | ⟨r, rid⟩ ∈ GTr.Edges }
14: Frontier += rid
15: return GTr

Figure 6: Algorithm for explicitly materializing the time-
precedence partial order, <Tr, in a graph. The algorithm con-
structs GTr so that r1 <Tr r2 ⇐⇒ GTr has a directed path from
r1 to r2. Tr is assumed to be a (balanced; §3) list of REQUEST
and RESPONSE events in time order.

Every new arrival descends from all members of the frontier.
Once a request leaves, it evicts all of its parents from the
frontier. This algorithm may be of independent interest; for
example, it could be used to accelerate prior work [13, 50].

Overall, the algorithms in Figures 5 and 6 cost O(X+Y+Z)
time and O(Y ) space [81, §A.8], with good constants (Fig. 9;
§5.2); here, Y is the number of object operations in the logs.

4 A BUILT SYSTEM: OROCHI
The prior two sections described the Efficient Server Audit
Problem, and how it can be solved with SSCO. This section
applies the model to an example system that we built.

Consider again Dana, who wishes to verify execution of a
SQL-backed PHP web application running on AWS. In this
context, the program is a PHP application (and the separate
PHP scripts are subroutines). The executor is the entire remote
stack, from the hardware to the hypervisor and all the way up
to and including the PHP runtime; we often call the executor
just the server. The requests and responses are the HTTP
requests and responses that flow in and out of the application.
The collector is a middlebox at the edge of Dana’s company,
and is placed to inspect and capture end-clients’ requests
and the responses that they receive. An object can be a SQL
database, per-client data that persists across requests, or other
external state accessed by the application.

We can apply SSCO to this context, if we:

• Develop a record-replay system for PHP in which replay
is batched according to SIMD-on-demand (§3.1).
• Define a set of object types that (a) abstract PHP state

constructs (session data, databases, etc.) and (b) obey the

semantics in SSCO (§3.2). Each object type requires adapt-
ing simulate-and-check (§3.3) and, possibly, modifying
the application to respect the interfaces of these objects.
• Incorporate the capture (and ideally validation) of certain

sources of non-determinism, such as PHP built-ins.

The above items represent the main work of our system,
OROCHI. We describe the details in Sections 4.3–4.5.

4.1 Applicability of OROCHI, theory vs. practice
OROCHI is relevant in scenarios besides Dana’s. As an exam-
ple, Pat the Principal runs a public-facing web application
on local hardware and is worried about compromise of the
server, but trusts a middlebox in front of the server to collect
the trace. We describe other scenarios later (§7).

OROCHI is implemented for PHP-based HTTP applications
but in principle generalizes to other web standards. Also,
OROCHI verifies an application’s interactions with its clients;
verifying communication with external services requires addi-
tional mechanism (§5.5). Ultimately, OROCHI is geared to ap-
plications with few such interactions. This is certainly restric-
tive, but there is a useful class within scope: the LAMP [3]
stack. The canonical LAMP application is a PHP front-end to
a database, for example a wiki or bug database.

The model in Sections 2 and 3 was very general and
abstracted away certain considerations that are relevant in
OROCHI’s setting. We describe these below:

Persistent objects. The verifier needs the server’s objects
as they were at the beginning of the audited period. If audit
periods are contiguous, then the verifier in OROCHI produces
the required state during the previous audit (§4.5).

Server-client collusion. In Section 2, we made no assump-
tions about the server and clients. Here, however, we assume
that the server cannot cause end-clients to issue spurious
requests; otherwise, the server might be able to “legally” in-
sert events into history. This assumption fits Dana’s situation
though is admittedly shakier in Pat’s.

Differences in stack versions. The verifier’s and server’s
stacks need not be the same. However, it is conceivable that
different versions could cause the verifier to erroneously re-
ject a well-behaved server (the inverse error does not arise:
validity is defined by the verifier’s re-execution). If the ver-
ifier wanted to eliminate this risk, it could run a stack with
precise functional equivalence to the server’s. Another option
is to obtain the server-side stack in the event of a divergent
re-execution, so as to exonerate the server if warranted.

Modifications by the network. Responses modified en route
to the collector appear to OROCHI to be the server’s responses;
modifications between the collector and end-clients—a real
concern in Pat’s scenario, given that ISPs have hosted ad-
inserting middleboxes [30, 91]—can be addressed by Web
Tripwires (WT) [69], which are complementary to OROCHI.
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4.2 Some basics of PHP
PHP [4] is a high-level language. When a PHP script is run
by a web server, the components of HTTP requests are ma-
terialized as program variables. For example, if the end-user
submits http://www.site.org/s.php?a=7, then the web
server invokes a PHP runtime that executes s.php; within the
script s.php, $_GET['a'] evaluates to 7.

The data types are primitive (int, double, bool, string);
container (arrays, objects); reference; class; resource (an
abstraction of an external resource, such as a connection
to a database system); and callables (closures, anonymous
functions, callable objects).

The PHP runtime translates each program line to byte code:
one or more virtual machine (VM) instructions, together with
their operands. (Some PHP implementations, such as HHVM,
support JIT, though OROCHI’s verifier does not support this
mode.) Besides running PHP code, the PHP VM can call
built-in functions, written in C/C++.

4.3 SIMD-on-demand execution in OROCHI

The server and verifier run modified PHP runtimes. The
server’s maintains an incremental digest for each execution.
When the program reaches a branch, this runtime updates the
digest based on the type of the branch (jump, switch, or itera-
tion) and the location to which the program jumps. The digest
thereby identifies the control flow, and the server records it.

The verifier’s PHP runtime is called acc-PHP; it performs
SIMD-on-demand execution (§3.1), as we describe below.

Acc-PHP works at the VM level, though in our examples
and description below, we will be loose and often refer to the
original source. Acc-PHP broadens the set of PHP types to
include multivalue versions of the basic types. For example,
a multivalue int can be thought of as a vector of ints. A con-
tainer’s cells can hold multivalues; and a container can itself
be a multivalue. Analogously, a reference can name a mul-
tivalue; and a reference can itself be a multivalue, in which
case each of the references in the vector is logically distinct.
A variable that is not a multivalue is called a univalue.

All requests in a control flow group invoke the same PHP
script s. At the beginning of re-executing a control flow group,
acc-PHP sets the input variables in s to multivalues, based on
the inputs in the trace. Roughly speaking, instructions with
univalue operands produce univalues, and instructions with
multivalue operands produce multivalues. But when acc-PHP
produces a multivalue whose components are identical, re-
flecting a variable that is the same across executions, acc-PHP
collapses it down to a univalue; this is crucial to deduplica-
tion (§5.2). A collapse is all or nothing: every multivalue has
cardinality equal to the number of requests being re-executed.

Primitive types. When the operands of an instruction or func-
tion are primitive multivalues, acc-PHP executes that instruc-
tion or function componentwise. Also, if there are mixed
multivalue and univalue operands, acc-PHP performs scalar
expansion (as in Matlab, etc.): it creates a multivalue, all of
whose components are equal to the original univalue. As an
example, consider:

1 $sum = $_GET['x'] + $_GET['y'];

2 $larger = max ($sum, $_GET['z']);

3 $odd = ($larger % 2) ? "True" : "False";

4 echo $odd;

r1: /prog.php?x=1&y=3&z=10

r2: /prog.php?x=2&y=4&z=10

There are two requests: r1 and r2. Each has three in-
puts: x, y, and z, which are materialized in the program as
$_GET['x'], etc. Acc-PHP represents these inputs as mul-
tivalues: $_GET['x'] evaluates to [1, 2], and $_GET['y']
evaluates to [3, 4]. In line 1, both operands of + are multi-
values, and $sum receives the elementwise sum: [4, 6]. In
line 2, $larger receives [10, 10], and acc-PHP merges the
multivalue to make it a univalue. As a result, lines 3 and 4
execute once, rather than once for each request.

A multivalue can comprise different types. For example,
in two requests that took the same code path, a program
variable was an int in one request and a float in the other. Our
acc-PHP implementation handles an int-and-float mixture.
However, if acc-PHP encounters a different mixture, it retries,
by separately re-executing the requests in sequence.

Containers. We use the example of a “set” on an object:
$obj->$key = $val. Acc-PHP handles “gets” similarly,
and likewise other containers (arrays, arrays of arrays, etc.).

Assume first that $obj is a multivalue. If either of $key
and $val are univalues, acc-PHP performs scalar expansion
to create a multivalue for $key and $val. Then, acc-PHP
assigns the ith component of $val to the property named by
the ith component of $key in the ith object in $obj.

Now, if $obj is a univalue and $key is a multivalue, acc-PHP
expands the $obj into a multivalue, performs scalar expan-
sion on $val (if a univalue), and then proceeds as in the
preceding paragraph. The reason for the expansion is that in
the original executions, the objects were no longer equivalent.

When $obj and $key are univalues, and $val is a mul-
tivalue, acc-PHP assigns $val to the given object’s given
property. This is similar to the way that acc-PHP set up
$_GET['a'] as a multivalue in the example above.

Built-in functions. For acc-PHP’s re-execution to be correct,
PHP’s built-in functions (§4.2) would need to be extended to
understand multivalues, perform scalar expansion as needed,
etc. But there are thousands of built-in functions.
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To avoid modifying them all, acc-PHP does the following.
When invoking a built-in function, it checks whether any of
the arguments are multivalues (if the function is a built-in
method, it also checks whether $this is a multivalue). If so,
acc-PHP splits the multivalue argument into a set of univalues;
assume for ease of exposition that there is only one such
multivalue argument. Acc-PHP then clones the environment
(argument list, function frame); performs a deep copy of any
objects referenced by any of the arguments; and executes the
function, once for each univalue. Finally, acc-PHP returns the
separate function results as a multivalue and maintains the
object copies as multivalues. The reason for the deep copy
is that the built-in function could have modified the object
differently in the original executions.

4.4 Concurrency and shared objects in OROCHI

SSCO’s concurrency model (§3.2) fits PHP-based applications,
which commonly have concurrent threads, each handling a
single end-client request sequentially. OROCHI supports sev-
eral objects that obey SSCO’s required semantics (§3.2) and
that abstract key PHP programming constructs:

• Registers, with atomic semantics [54]. These work well
for modeling per-user persistent state, known as “session
data.” Specifically, PHP applications index per-user state
by browser cookie (this is the “name” of the register) and
materialize the state in a program variable. Constructing
this variable is the “read” operation; a “write” is performed
by PHP code, or by the runtime at the end of a request.
• Key-value stores, exposing a single-key get/set interface,

with linearizable semantics [45]. This models various PHP
structures that provide shared memory to requests: the
Alternative PHP Cache (APC), etc.
• SQL databases, which support single-query statements and

multi-query transactions. To make a SQL database behave
as one atomic object, we impose two restrictions. First, the
database’s isolation level must be strict serializability [21,
62].1 Second, a multi-statement transaction cannot enclose
other object operations (such as a nested transaction).

The first DB restriction can be met by configuration, as
many DBMSes provide strict serializability as an option. How-
ever, this isolation level sacrifices some concurrency com-
pared to, say, MySQL’s default [6]. The second DB restriction
sometimes necessitates minor code changes, depending on
the application (§5.4).

To adapt simulate-and-check to an object type, OROCHI
must first collect an operation log (§3.3). To that end, some
entity (this step is untrusted) wraps relevant PHP statements,
to invoke a recording library. Second, OROCHI’s verifier needs

1Confusingly, our required atomicity is, in the context of ACID databases,
not the “A” but the kind of “I” (isolation); see Bailis [16] for an untangling.

a mechanism for efficiently re-executing operations on the
object. We showed the solution for registers in §3.3. But that
technique would not be efficient for databases or key-value
stores: to re-execute a DB “select” query, for example, could
require going backward through the entire log.

4.5 Adapting simulate-and-check to databases
Given a database object d—OROCHI handles key-value stores
similarly—the verifier performs a versioned redo pass over
OLd at the beginning of the audit: it issues every transaction
to a versioned database [26, 40, 61, 80], setting the version
to be the sequence number in OLd. During re-execution, the
verifier handles a “write” query (UPDATE, etc.) by checking
that the program-generated SQL matches the opcontents field
in the corresponding log entry. The verifier handles “read”
queries (SELECT, etc.) by issuing the SQL to the versioned
DB, specifying the version to be the log sequence number
of the current operation. The foregoing corresponds to an
additional step in SSCO_AUDIT and further cases in SimOp
(Figure 3); the augmented algorithms are in Appendix A [81].

As an optimization, OROCHI applies read query deduplica-
tion. If two SELECT queries P and Q are lexically identical
and if the parts of the DB covered by P and Q do not change
between the redo of P and Q, then it suffices to issue the query
once during re-execution. To exploit this fact, the verifier, dur-
ing re-execution, clusters all queries in a control flow group
and sorts each cluster by version number. Within a cluster, it
de-duplicates queries P and Q if the tables that P and Q touch
were not modified between P’s and Q’s versions.

To speed the versioned redo pass, the verifier directs update
queries to an in-memory versioned database M, which acts as
a buffer in front of the audit-time versioned database V . When
the log is fully consumed, the verifier migrates the final state
of M to V using a small number of transactions: the verifier
dumps each table in M as a single SQL update statement
that, when issued to V , reproduces the table. The migration
could also happen when M reaches a memory limit (although
we do not implement this). This would require subsequently
re-populating M by reading records from V .

4.6 Non-determinism
OROCHI includes non-determinism that is not part of the SSCO
model: non-deterministic PHP built-ins (time, getpid, etc.),
non-determinism in a database (e.g., auto increment ids), and
whether a given transaction aborts.

Replay systems commonly record non-determinism during
online execution and then, during replay, supply the recorded
information in response to a non-deterministic call (see §6.3
for references). OROCHI does this too. Specifically, OROCHI
adds a fourth report type (§3): non-deterministic information,
such as the return values of certain PHP built-in invocations.
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OROCHI component Base LOC written/changed

Server PHP (§4.3) HHVM [7] 400 lines of C++
Acc-PHP (§4.3–§4.6) HHVM [7] 13k lines of C++
Record library (§4.4, §4.6) N/A 1.6k lines of PHP
DB logging (§4.4) MySQL 320 lines of C++
In-memory versioned DB (§4.5) SQLite 1.8k lines of C++
Other audit logic (§3, §4) N/A 2.5k lines of C++/PHP/Bash
Rewriting tool (§4.7) N/A 470 lines of Python, Bash

Figure 7: OROCHI’s software components.

The server collects these reports by wrapping the relevant
PHP statements (as in §4.4).

But, because reports are untrusted, OROCHI’s verifier also
checks the reported non-determinism against expected behav-
ior. For example, the verifier checks that queries about time
are monotonically increasing and that the process id is con-
stant within requests. For random numbers, the application
could seed a pseudorandom number generator, and the seed
would be the non-deterministic report, though we have not
implemented this.

Unfortunately, we cannot give rigorous guarantees about
the efficacy of these checks, as our definitions and proofs [81,
Appx. A] do not capture this kind of non-determinism. This
is disappointing, but the issue seems fundamental, unless we
pull the semantics of PHP into our proofs. Furthermore, this
issue exists in all systems that “check” an untrusted lower
layer’s return values for validity [14, 17, 28, 46, 95].

Beyond that, the server gets discretion over the thread
schedule, which is a kind of non-determinism, albeit one that
is captured by our definitions and proofs [81, Appx. A]. As
an example, if the web service performs a lottery, the server
could delay responding to a collection of requests, invoke the
random number library, choose which request wins, and then
arrange the reports and responses accordingly.

4.7 Implementation details
Figure 7 depicts the main components of OROCHI.

A rewrite tool performs required PHP application modifi-
cations: inserting wrappers (§4.4, §4.6), and adding hooks to
record control flow digests and maximum operation number.
Given some engineering, this rewriting can be fully automatic;
our implementation sometimes needs manual help.

OROCHI’s versioned DB implementation (§4.5) borrows
Warp’s [26] schema, and uses the same query rewriting tech-
nique (see also §6.2). We implemented OROCHI’s audit-time
key-value store as a new component (in acc-PHP) to provide
a versioned put/get interface.

Acc-PHP has several implementation limitations. One is
the limited handling of mixed types, mentioned earlier (§4.3);
another is that an object that points to itself (such as $a->b->a)
is not recognized as such, if the object is a multivalue. When

acc-PHP encounters such cases, it re-executes requests sep-
arately. In addition, acc-PHP runs with a maximum number
of requests in a control flow group (3,000 in our implementa-
tion); this is because the memory consumed by larger sizes
would cause thrashing and slow down re-execution.

In OROCHI, the server must be drained prior to an audit, but
this is not fundamental; natural extensions of the algorithms
would handle prefixes or suffixes of requests’ executions.

5 EVALUATION OF OROCHI
This section answers the following questions:

• How do OROCHI’s verifier speedup and server overhead
compare to a baseline of simple re-execution? (§5.1)
• What are the sources of acceleration? (§5.2)
• What is the “price of verifiability”, meaning OROCHI’s

costs compared to the legacy configuration? (§5.3)
• What kinds of web applications work with OROCHI? (§5.4)

Applications and workloads. We answer the first two ques-
tions with experiments, which use three applications: Me-
diaWiki (a wiki used by Wikipedia and others), phpBB (an
open source bulletin board), and HotCRP (a conference re-
view application). These applications stress different work-
loads. Also, MediaWiki and phpBB are in common use,
and HotCRP has become a reference point for systems se-
curity publications that deal with PHP-based web applica-
tions [26, 52, 67, 68, 72, 93]. Indeed, MediaWiki and HotCRP
are the applications evaluated by Poirot [52] (§6.3). Our ex-
perimental workloads are as follows:

MediaWiki (v1.26.2). Our workload is derived from a 2007
Wikipedia trace, which we downsampled to 20,000 requests to
200 pages, while retaining its Zipf distribution (β = 0.53) [85].
We used a 10 year-old trace because we were unable to find
something more recent; we downsampled because the original
has billions of requests to millions of pages, which is too large
for our testbed (on the other hand, smaller workloads produce
fewer batching opportunities so are pessimistic to OROCHI).

phpBB (v3.2.0). On September 21, 2017, we pulled posts
created over the preceding week from a real-world phpBB
instance: CentOS [2]. We chose the most popular topic. There
were 63 posts, tens to thousands of views per post, and zero
to tens of replies per post. We assume that the ratio of page
views from registered users (who log in) to guests (who do
not) is 1:40, based on sampling reports from the forum (4–9
registered users and 200–414 guests were online). We create
83 users (the number of distinct users in the posts) to view
and reply to the posts. The workload contains 30k requests.

HotCRP. We build a workload from 269 papers, 58 review-
ers, and 820 reviews, with average review length of 3625 char-
acters; the numbers are from SIGCOMM 2009 [8, 63]. We
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audit server CPU avg reports (per request) DB overhead
App speedup overhead request baseline OROCHI OROCHI ovhd temp permanent

MediaWiki 10.9× 4.7% 7.1KB 0.8KB 1.7KB 11.4% 1.0× 1×
phpBB 5.6× 8.6% 5.7KB 0.1KB 0.3KB 2.7% 1.7× 1×
HotCRP 6.2× 5.9% 3.2KB 0.0KB 0.4KB 10.9% 1.5× 1×
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Figure 8: OROCHI compared to simple re-execution (§5.1). Left table: “Audit speedup” is the ratio of audit-time CPU costs, assuming
(conservatively) that auditing in simple re-execution is the same cost as serving the legacy application, and (perhaps optimistically)
that simple re-execution and OROCHI are given HTTP requests and responses from the trace collector. “Server CPU overhead” is
the CPU cost added by OROCHI, conservatively assuming that the baseline imposes no server CPU costs. The reports are compressed
(OROCHI’s overheads include the CPU cost of compression/decompression; the baseline is not charged for this). “OROCHI ovhd” in
those columns is the ratio of (the trace plus OROCHI’s reports) to (the trace plus the baseline’s reports). “Temp” DB overhead refers
to the ratio of the size of the on-disk versioned DB (§4.5) to the size of a non-versioned DB. Right graph: Latency vs. server throughput
for phpBB (the other two workloads are similar). Points are 90th (bars are 50th and 99th) percentile latency for a given request rate,
generated by a Poisson process. The depicted data are the medians of their respective statistics over 5 runs.

impose synthetic parameters: one registered author submits
one valid paper, with a number of updates distributed uni-
formly from 1 to 20; each paper gets 3 reviews; each reviewer
submits two versions of each review; and each reviewer views
100 pages. In all, there are 52k requests.

As detailed later (§5.4), we made relatively small modifica-
tions to these applications. A limitation of our investigation is
that all modeled clients use the same browser; however, our
preliminary investigation indicates that PHP control flow is
insensitive to browser details.

Setup and measurement. Our testbed comprises two ma-
chines connected to a switch. Each machine has a 3.3GHz
Intel i5-6600 (4-core) CPU with 16GB memory and a 250GB
SSD, and runs Ubuntu 14.04. One of the machines alternates
between the roles of server (running Nginx 1.4.6) and verifier;
the other generates load. We measure CPU costs from Linux’s
/proc. We measure throughput and latency at the client.

5.1 OROCHI versus the baseline
What is the baseline? We want to compare OROCHI to a
system that audits comprehensively without trusting reports.
A possibility is probabilistic proofs [20, 23, 32, 65, 75, 89],
but they cannot handle our workloads, so we would have to
estimate, and the estimates would yield outlandish speedups
for OROCHI (over 106×). Another option is untrusted full-
machine replay, as in AVM [43]. However, AVM’s imple-
mentation supports only single-core servers, and handling
untrusted reports and concurrency in VM replay might re-
quire research (§7).

Instead, we evaluate against a baseline that is less expensive
than both of these approaches, and hence is pessimistic to
OROCHI: the legacy application (without OROCHI), which can
be seen as a lower bound on hypothetical simple re-execution.

We capture this baseline’s audit-time CPU cost by mea-
suring the legacy server CPU costs; in reality, an audit not
designed for acceleration would likely proceed more slowly.
We assume this baseline has no server CPU overhead; in
reality, the baseline would have some overhead. We capture
the baseline’s report size with OROCHI’s non-deterministic re-
ports (§4.6), because record-replay systems need non-deterministic
advice; in reality, the baseline would likely need additional
reports to reconstruct the thread schedule. Finally, we assume
that the baseline tolerates arbitrary database configurations
(unlike OROCHI; §4.4), although we assume that the baseline
needs to reconstruct the database (as in OROCHI).

Comparison. Figure 8 compares OROCHI to the aforemen-
tioned baseline. At a high level, OROCHI accelerates the audit
compared to the baseline (we delve into this in §5.2) but in-
troduces some server CPU cost, with some degradation in
throughput, and minor degradation in latency.

The throughput reductions are respectively 13.0%, 11.1%
and 17.8% for phpBB, MediaWiki, and HotCRP. The through-
put comparison includes the effect of requiring strict serializ-
ability (§4.4), because the baseline’s databases are configured
with MySQL’s default isolation level (repeatable read).

The report overhead depends on the frequency of object
operations (§4.4) and non-deterministic calls (§4.6). Still, the
report size is generally a small fraction of the size of the
trace, as is OROCHI’s “report overhead” versus the baseline.
OROCHI’s audit-time DB storage requirement is higher than
the baseline’s, because of versioning (§4.5), but after the audit,
OROCHI needs only the “latest” state.

5.2 A closer look at acceleration
Figure 9 decomposes the audit-time CPU costs. The “DB
query” portion illustrates query deduplication (§4.5). Without
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Figure 9: Decomposition of audit-time CPU costs. “PHP” (in
OROCHI) is the time to perform SIMD-on-demand execu-
tion (§3.1,§4.3) and simulate-and-check (§3.3,§4.4). “DB query”
is the time spent on DB queries during re-execution (§4.5). “Pro-
cOpRep” is the time to execute the logic in Figures 5 and 6.
“DB redo” is the time to reconstruct the versioned storage (§4.5).
“Other” includes miscellaneous costs such as initializing inputs
as multivalues, output comparison, etc.

this technique, every DB operation would have to be re-issued
during re-execution. (OROCHI’s verifier re-issues every regis-
ter and key-value operation, but these are inexpensive.) Query
deduplication is more effective when the workload is read-
dominated, as in our MediaWiki experiment.

We now investigate the sources of PHP acceleration; we
wish to know the costs and benefits of univalent and mul-
tivalent instructions (§3.1, §4.3). We divide the 100+ PHP
byte code instructions into 10 categories (arithmetic, con-
tainer, control flow, etc.); choose category representatives;
and run a microbenchmark that performs 107 invocations
of the instruction and computes the average cost. We run
each microbenchmark against unmodified PHP, acc-PHP with
univalent instructions, and acc-PHP with multivalent instruc-
tions; we decompose the latter into marginal cost (the cost of
an additional request in the group) and fixed cost (the cost if
acc-PHP were maintaining a multivalue with zero requests).

Figure 10 depicts the results. The fixed cost of multiva-
lent instructions is high, and the marginal cost is sometimes
worse than the unmodified baseline. In general, multivalent
execution is worse than simply executing the instruction n
times!2 So how does OROCHI accelerate? We hypothesize
that (i) many requests share control flow, and (ii) within a
shared control flow group, the vast majority of instructions are
executed univalently. If this holds, then the gain of SIMD-on-
demand execution comes not from the “SIMD” part but rather
from the “on demand” part: the opportunistic collapsing of
multivalues enables a lot of deduplication.

2One might wonder: would it be better to batch by control flow and identical
inputs? No; that approach still produces multivalent executions because of
shared object reads and non-determinism, and the batch sizes are smaller.
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Figure 11: Characteristics of control flow groups in the Medi-
aWiki workload. Each bubble is a control flow group; the center
of a bubble gives the group’s n (number of requests in the group)
and α (proportion of univalent instructions); the size of a bub-
ble is proportional to ℓ (number of instructions in the group).
This workload has 527 total groups (bubbles), 237 groups with
n > 1, and 200 unique URLs. All groups have α > 0.95; only the
occupied portion of the x-axis is depicted.

To confirm the hypothesis, we analyze all of the control
flow groups in our workloads. Each group c is assigned a triple
(nc,αc, ℓc), where nc is the number of requests in the group,
αc is the proportion of univalent instructions in that group,
and ℓc is the number of instructions in the group. (Note that if
nc = 1, then αc = 1.0.) Figure 11 depicts these triples for the
MediaWiki workload. There are many groups with high nc,
and most groups have very high αc (the same holds for the
other two workloads), confirming our hypothesis. Something
else to note is a slight negative correlation between nc and αc
within a workload, which is not ideal for OROCHI.
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5.3 The price of verifiability
We now take stock of OROCHI’s total overhead by comparing
OROCHI to the legacy configuration. OROCHI introduces a
modest cost to the server: 4.7%–8.6% CPU overhead (Fig-
ure 8) and temporary storage for trace and reports. But the
main price of verifiability is the verifier’s resources:

CPU. Since the verifier’s audit-time CPU costs are between
1/5.6 and 1/10.9 those of the server’s costs (per §5.1, Figure 8),
OROCHI requires that the verifier have 9.1%–18.0% of the
CPU capacity that the server does.

Storage. The verifier has to store the database between
audits, so the verifier effectively maintains a copy of the
database. During the audit, the verifier also stores the trace,
reports, and additional DB state (the versioning information).

Network. The verifier receives the trace and reports over the
network. Note that in the Dana (§1) and Pat (§4.1) scenarios,
the principal is already paying (on behalf of clients or the
server, respectively) to send requests and responses over the
wide area network—which likely swamps the cost of sending
the same data to the verifier over a local network.

5.4 Compatibility
We performed an informal survey of popular PHP applications
to understand the effect of OROCHI’s two major compatibility
restrictions: the non-verification of interactions with other
applications (§4.1) and the non-nesting of object operations
inside DB transactions (§4.4).

We sorted GitHub Trending by stars in decreasing order,
filtered for PHP applications (filtering out projects that are
libraries or plugins), and chose the top 10: Wordpress, Pi-
wik, Cachet, October, Paperwork, Magento2, Pagekit, Lychee,
Opencart, and Drupal. We inspected the code (and its config-
uration and documentation), ran it, and logged object oper-
ations. For eight of them, the sole external service is email;
the other two (Magento2 and Opencart) additionally interact
with a payment server. Also, all but Drupal and October are
consistent with the DB requirement.

This study does not imply that OROCHI runs with these
applications out of the box. It generally takes some adjustment
to fit an application to OROCHI, as we outline below.

MediaWiki does not obey the DB requirement. We modi-
fied it so that requests read in the relevant APC keys (which
we obtain through static inspection plus a dynamic list of
needed keys, itself stored in the APC), execute against a local
cache of those keys, and flush them back to the APC. This
gives up some consistency in the APC, but MediaWiki any-
way assumes that the APC is providing loose consistency. We
made several other minor modifications to MediaWiki; for
example, changing an absolute path (stored in the database)
to a relative one. In all, we modified 346 lines of MediaWiki
(of 410k total and 74k invoked in our experiments).

We also modified phpBB (270 lines, of 300k total and 44k
invoked), to address a SQL parsing difference between the
actual database (§4.4) and the in-memory one (§4.5) and to
create more audit-time acceleration opportunities (by reduc-
ing the frequency of updates to login times and page view
counters). We modify HotCRP (67 lines, of 53k total and
37k invoked), mainly to rewrite select * from queries to
request individual columns; the original would fetch the be-
gin/end timestamp columns in the versioned DB (§4.5, §4.7).

5.5 Discussion and limitations of OROCHI

Below we summarize OROCHI and discuss its limitations.
Guarantees. OROCHI is based on SSCO, which has prov-

able properties. However, OROCHI does not provide SSCO’s
idealized Soundness guarantee (§2), because of the leeway
discussed earlier (§4.6). And observable differences in the
verifier’s and server’s stacks (§4.1) would make OROCHI fall
short of SSCO’s idealized Completeness guarantee.

Performance and price. Relative to a pessimistic baseline,
OROCHI’s verifier accelerates by factors between 5.6–10.9×
in our experiments, and server overhead is below 10% (§5.1).
The CPU costs introduced by OROCHI are small, compared to
what one sometimes sees in secure systems research; one rea-
son is that OROCHI is not based on cryptography. And while
the biggest percentage cost for the verifier is storage (because
the verifier has to duplicate it; §5.3), storage is generally
inexpensive in dollar terms.

Compatibility and usability. On the one hand, OROCHI is
limited to a class of applications, as discussed (§4.1, §5.4). On
the other hand, the applications in our experiments—which
were largely chosen by following prior work (discussed early
in §5)—did not require much modification (§5.4). Best of
all, OROCHI is fully compatible with today’s infrastructure: it
works with today’s end-clients and cloud offerings as-is.

Of course, OROCHI would benefit from extensions. All
of the applications we surveyed make requests of an email
server (§5.4). We could verify those requests—but not the
email server itself; that is future work—with a modest addi-
tion to OROCHI, namely treating external requests as another
kind of response. This would require capturing the requests
themselves; that could be done, in Pat’s scenario (§4.1), by
the trace collector or, in Dana’s scenario (§1), by redirecting
email to a trusted proxy on the verifier.

Another extension is adding a file abstraction to our three
object types (§4.4). This isn’t crucial—many applications,
including five of the 10 in our survey (§5.4), can be config-
ured to use alternatives such as a key-value store—but some
deployers might prefer a file system back-end. Another ex-
tension is filtering large objects from the trace, before it is
delivered to the verifier. A possible solution is to leverage
browser support for Resource Integrity: the verifier would

559



check that the correct digest was supplied to the browser,
leaving the actual object check to the browser. Other future
work is HTTPS; one option is for the server to record non-
deterministic cryptographic input, and the verifier uses it to
recover the plaintext stream.

A more fundamental limitation is that if OROCHI’s verifier
does not have a trace from a period (for example, before
OROCHI was deployed on a given server), then OROCHI can
verify only by getting the pre-OROCHI collection of objects
from the server (requiring a large download) and treating
those objects as the true initial state (requiring trust).

6 RELATED WORK
6.1 Efficient execution integrity
Efficient execution integrity—giving some principal confi-
dence that an executor’s outputs are consistent with an ex-
pected program, without requiring the principal to re-execute
the program—is a broad topic. The Efficient Server Audit
Problem (§2) combines for the first time: (1) no assumptions
about the executor (though our verifier gets a trace of request-
s/responses), (2) a concurrent executor, and (3) a requirement
of scaling to real applications, including legacy ones.

A classic solution is Byzantine replication [25]; the princi-
pal needs no verification algorithm but assumes that a super-
majority of nodes operates fault-free. Another classic tech-
nique is attestation: proving to the principal that the executor
runs the expected software. This includes TPM-based ap-
proaches [27, 44, 58, 59, 66, 71, 74, 79] and systems [14, 17,
48, 73, 77] built on SGX hardware [49]. But attesting to a
(possibly vulnerable) stack does not guarantee the execution
integrity of the program atop that stack. Using SGX, we can
place the program in its own enclave, but it is difficult to rig-
orously establish that the checks performed by the in-enclave
code on the out-enclave code [14, 17, 77] comprehensively
detect deviations from expected behavior (though see [78]).

EVE [50] spot-checks for storage consistency violations
but assumes correct application execution. Like OROCHI (§4),
Verena [51] targets web applications; it doesn’t require a trace
but does assume a trusted hash server. Verena’s techniques are
built on authenticated data structures with a restricted API; it
does not support general-purpose or legacy web applications.

Execution integrity has long been studied by theorists [15,
37, 38, 42, 60], and these ideas have been refined and imple-
mented [19, 32, 65, 75] (see [89] for a survey and [12, 18, 88,
96] for recent developments). This theory makes no assump-
tions about the executor or the workload. But it doesn’t handle
a concurrent executor. Also, because these works generally
represent programs as static circuits in which state operations
exhaust a very limited “gate budget”, and because the execu-
tor’s overhead is generally at least six orders of magnitude,
they are for now unsuited to legacy web applications.

6.2 Related techniques
Computation deduplication. Delta execution [84] validates
patches in C programs by running the patched and unpatched
code together; it attempts to execute only the deltas, using
copy-on-write fork and merging. In incremental computation
(see data-triggered threads [83], iThreads [22], UNIC [82],
and citations therein), a program runs once and, when the
input changes, only the dependent parts rerun. In contrast,
SIMD-on-demand (§3.1) works at a higher level of abstrac-
tion; this exposes deduplication opportunities [52] and allows
the verifier and executor to run separate implementations of
the same logical program (§7). Also, SIMD-on-demand re-
executes multiple requests simultaneously, which composes
easily with query deduplication (§4.5).

Consistency testing. Anderson et al. [13] give an algo-
rithm that checks whether a trace of operations on a key-value
store obeys register semantics [54]; the algorithm builds a
graph with time and precedence edges, and checks whether it
is acyclic. (See EVE [50] for a related algorithm, and Gibbons-
Korach [39] and others [41, 90] for consistency testing in gen-
eral; see also [9, 10, 76] for related algorithms that analyze
programs for memory consistency.) The time edges and cycle
detection in SSCO (Fig. 5) are reminiscent of Anderson et al.;
however, SSCO captures time edges more efficiently, as noted
in §3.5. More significantly, SSCO solves a different problem:
it validates whether a request trace meets complex applica-
tion semantics (requests are permitted to be intermingled and
invoke multiple operations), and reports are untrusted.

Time travel databases. As noted (§4.7), OROCHI’s ver-
sioned DB borrows from Warp [26] (see also [40, 61, 80]).
However, OROCHI constructs that DB only during audit, which
enables the techniques in §4.5. Also, OROCHI handles multi-
statement transactions, which Warp does not implement.

6.3 Deterministic record-replay
Record-replay is a mature field [33, 34]. SSCO (with OROCHI
as an instantiation) is the first record-replay system to achieve
the following combination: (a) the recorder is untrusted (and
the replayer has an input/output trace), (b) replay is acceler-
ated versus re-executing, and (c) there are concurrent accesses
to shared objects. We elaborate below.

Untrusted recorder. In AVM [43], an untrusted hypervisor
records alleged network I/O and non-deterministic events.
A replayer checks this log against the ground truth network
messages and then re-executes, using VM replay [24, 35].
In Ripley [87], a web server re-executes client-side code to
determine whether the output matches what the client claimed.
In both cases, the replayer does not trust the recorder, but in
neither case is re-execution accelerated.

Accelerated replay. Poirot [52] accelerates the re-execution
of web applications. OROCHI imitates Poirot: we borrow the
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observation that web applications have repeated control flow
and the notion of grouping re-execution accordingly, and
we follow some of Poirot’s implementation and evaluation
choices (§4.7, §5). But there is a crucial distinction. Poirot
analyzes patches in application code; its techniques for ac-
celeration (construct templates for each claimed control flow
group) and shared objects (replay “reads”) fundamentally
trust the language runtime and all layers below [52, §2.4].

Shared objects and concurrency. We focus on solutions
that enable an offline replayer to deterministically re-execute
concurrent operations. First, the replayer can be given a thread
schedule explicitly [56, 86]. Second, the replayer can be given
information to reconstruct the thread schedule, for example
operation precedence using CREW protocols [29, 36, 53, 55,
94]. Third, the replayer can be given information to approx-
imately reconstruct the thread schedule, for example, syn-
chronization precedence or sketches [11, 64, 70].3 Closest
to simulate-and-check (§3.3) is LEAP [47] (see also [92]),
which is in the second category: for each shared Java variable,
LEAP logs the sequence of thread accesses. But SSCO’s logs
also contain operands. Simulate-and-check relates to record-
replay speculation [56]: it is reminiscent of the way that the
epoch-parallel processors in DoublePlay [86] check the start-
ing conditions of optimistically executing future splices.

7 FUTURE WORK AND CONCLUSION
To recap, we defined a general problem of execution integrity
for concurrent servers (§2); exhibited an abstract solution,
SSCO, based on new kinds of replay (§3); and described a
system, OROCHI, that instantiates SSCO for web applications
and runs on today’s cloud infrastructure (§4–§5).

OROCHI applies in scenarios beyond those of Dana (§1)
and Pat (§4.1). As an example, consider Adrian the AWS
User who deploys a public-facing web application. To use
OROCHI, Adrian needs a trace. Perhaps Adrian trusts AWS
to gather it (in which case Adrian’s threat model is a remote
attacker, not a cloud insider). Or perhaps AWS lets Adrian use
an SGX enclave, within which Adrian runs the trace collector
together with an HTTPS proxy that holds Adrian’s TLS keys;
this enforces trace collection and does not trust AWS but does
trust the attested trace collection software.

Another use case is patch-based auditing, proposed in
Poirot [52] (see also [57, 84]); here, one replays prior re-
quests against patched code to see if the responses are now
different. OROCHI can audit the effect of a patch at any layer,
not just in PHP code (as in Poirot).

An interesting aspect of SSCO is that the verifier and the
server need not run the same program—only the same logic.
For example, the executor can be a complex, replicated cloud

3DoublePlay [86] and Respec [56] use these techniques but do so online,
while searching for a thread schedule to give to an offline replayer.

environment while the verifier can re-execute the logic how-
ever it wants, as long as it gets appropriate reports.

Future work is to instantiate SSCO for other web languages,
create variations of SSCO for other concurrency models, and
extend SSCO to multiple interacting servers. In addition, we
think that the techniques of SSCO have wider applicability. For
example, a direction to explore is applying query deduplica-
tion (§4.5) and simultaneous replay (§3.1) to general-purpose
or lower-level record-replay systems.

Another interesting problem is to produce a multiprocessor
record-replay system that works in a setting in which reports
are untrusted. This problem provides some intuition for our
original challenge (§2), so we conclude the paper by pointing
out why this problem is difficult.

Suppose that the offline replayer expects an explicit thread
schedule from the recorder. Then the recorder could supply
a schedule that is inconsistent with any valid execution (for
example, a schedule that ignores user-level synchronization).
By correlating bogus outputs and a bogus schedule (similar
to §3.4), the recorder could cause the replayer to reproduce
illegal executions, violating Soundness (§2). If instead the
replayer gets sparse constraints from the recorder [11, 64]
and expects to synthesize a schedule itself, this would violate
Completeness (§2): an adversarial recorder can make the re-
player search in vain for a schedule, which means the recorder
needs to bound its searching, which means that some valid
executions will be rejected for lack of search time.

The fundamental difficulty here is that concurrency ne-
cessitates reports (for Completeness), but if the reports are
untrusted, the replayer could be misled (compromising Sound-
ness). Efficiency adds a further complication. This problem—
designing the reports and a procedure that validates them even
as it exploits them—was more challenging than we expected.

OROCHI’s source code will be released at:
https://github.com/naizhengtan/orochi
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