Smooth Storage: A Distributed Storage System for Managing Structured Time Series Data at Two Sigma

AuthorsSaurabh Goel

Presented at: CMU Time Series Database Lectures – Fall 2017

AbstractSmooth is a distributed storage system for managing structured time series data at Two Sigma. Smooth’s design emphasizes scale, both in terms of size and aggregate request bandwidth, reliability and storage efficiency. It is optimized for large parallel streaming read/write accesses over provided time ranges. Smooth has a clear separation between the metadata and data layers, and supports multiple pluggable object stores for storing data files. Data can be replicated or moved between different stores and data centers to support availability, performance and storage tiering objectives. Smooth is widely used at Two Sigma by various applications including modeling research workflows, data pipelines and various data analysis jobs. Smooth has been in development for about 5 years, currently stores multiple PBs of compressed data, and serves peak aggregate throughput in excess of 100 GB/s. In this talk, the author discusses the design and implementation of Smooth, our experience running it over the past two years, ongoing challenges, and future directions.

This article is not an endorsement by Two Sigma of the papers discussed, their viewpoints or the companies discussed. The views expressed above reflect those of the authors and are not necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, “Two Sigma”). The information presented above is only for informational and educational purposes and is not an offer to sell or the solicitation of an offer to buy any securities or other instruments. Additionally, the above information is not intended to provide, and should not be relied upon for investment, accounting, legal or tax advice. Two Sigma makes no representations, express or implied, regarding the accuracy or completeness of this information, and the reader accepts all risks in relying on the above information for any purpose whatsoever. Click here for other important disclaimers and disclosures.

Related Articles

This section links out to multiple articles. To read the article, click the headline.