MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension

Authors: Matteo Riondato (Two Sigma), Fabio Vandin

Published in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’18)

Abstract: We present MiSoSouP, a suite of algorithms for extracting high-quality approximations of the most interesting subgroups, according to different interestingness measures, from a random sample of a transactional dataset. We describe a new formulation of these measures that makes it possible to approximate them using sampling. We then discuss how pseudodimension, a key concept from statistical learning theory, relates to the sample size needed to obtain an high-quality approximation of the most interesting subgroups. We prove an upper bound on the pseudodimension of the problem at hand, which results in small sample sizes. Our evaluation on real datasets shows that MiSoSouP outperforms state-of-the-art algorithms offering the same guarantees, and it vastly speeds up the discovery of subgroups w.r.t. analyzing the whole dataset.

DOI: https://doi.org/10.1145/3219819.3219989

Download PDF

This article is not an endorsement by Two Sigma of the papers discussed, their viewpoints or the companies discussed. The views expressed above reflect those of the authors and are not necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, “Two Sigma”). The information presented above is only for informational and educational purposes and is not an offer to sell or the solicitation of an offer to buy any securities or other instruments. Additionally, the above information is not intended to provide, and should not be relied upon for investment, accounting, legal or tax advice. Two Sigma makes no representations, express or implied, regarding the accuracy or completeness of this information, and the reader accepts all risks in relying on the above information for any purpose whatsoever. Click here for other important disclaimers and disclosures.

Related Articles

This section links out to multiple articles. To read the article, click the headline.